INSTITUTO DE MATEMÁTICA
HJB --- GMA --- UFF

X(2333)
(X(2)-ISOCONJUGATE OF X(1444))


Click here to access the list of all triangle centers.

Interactive Applet

You can move the points A, B and C (click on the point and drag it).
Press the keys “+” and “−” to zoom in or zoom out the visualization window and use the arrow keys to translate it.

You can also construct all centers related with this one (as described in ETC) using the “Run Macro Tool”. To do this, click on the icon Run Macro Tool, select the center name from the list and, then, click on the vertices A, B and C successively.

The JRE (Java Runtime Environment) is not enabled in your browser!

Download all construction files and macros: tc.zip (10.1 Mb).
This applet was built with the free and multiplatform dynamic geometry software C.a.R..


Information from Kimberling's Encyclopedia of Triangle Centers

Trilinears            a/f(a,b,c) : b/f(b,c,a) : c/f(c,a,b), where f(a,b,c) is as in X(1444)
Barycentrics    a2/f(a,b,c) : b2/f(b,c,a): c2/f(c,a,b)

X(2333) lies on these lines:
4,9    25,41    28,291    34,2279    181,213    579,1722    608,1405    756,862    1126,1474    1254,1400    1918,2207    2225,2355

X(2333) = X(I)-Ceva conjugate of X(J) for these I,J: 19,1824    607,213    1826,42
X(2333) = X(1918)-cross conjugate of X(42)
X(2333) = crosspoint of X(I) and X(J) for these (I,J): 19,25    1400,2357    1824,1880
X(2333) = crosssum of X(I) and X(J) for these (I,J): 63,69    1444,1812


This is a joint work of
Humberto José Bortolossi, Lis Ingrid Roque Lopes Custódio and Suely Machado Meireles Dias.

If you have questions or suggestions, please, contact us using the e-mail presented here.

Departamento de Matemática Aplicada -- Instituto de Matemática -- Universidade Federal Fluminense




free counter