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In managing its assets and liabilities in light of uncertainties in cash flows, cost of funds and return on investments, a
bank must determine its optimal trade-off between risk, return and liquidity. In this paper we develop a multiperiod
stochastic linear programming model (ALM) that includes the essential institutional, legal, financial, and bank-related
policy considerations, and their uncertainties, yet is computationally tractable for realistically sized problems. A version
of the model was developed for the Vancouver City Savings Credit Union for a 5-year planning period. The results
indicate that ALM is theoretically and operationally superior to a corresponding deterministic linear programming
model, and that the effort required for the implementation of ALM, and its computational requirements, are comparable
to those of the deterministic model. Moreover, the qualitative and quantitative characteristics of the solutions are sensitive
to the model’s stochastic elements, such as the asymmetry of cash flow distributions. We also compare ALM with the
stochastic decision tree (SDT) model developed by S. P. Bradley and D. B. Crane. ALM is computationally more tractable
on realistically sized problems than SDT, and simulation results indicate that ALM generates superior policies.

he inherent uncertainty of their cash flows, cost
of funds and return on investments has prompted
banks to seek out greater efficiency in the management
of their assets and liabilities. This need has led to
studies concerned with how to structure a bank’s assets
and liabilities to make optimal trade-offs among risk,
return and liquidity. These studies focus on determin-
ing how funds should be used in various economic
scenarios. Important factors in these decisions include:
balancing of anticipated sources and uses of funds to
meet liquidity and capital adequacy constraints while
concurrently maximizing profitability (Chambers and
Charnes 1961, Cohen and Hammer 1967, 1972), al-
locating funds among assets based on risk and liquid-
ity classification, maturity and rate of return (Bradley
and Crane 1972, 1973, 1976); and adjusting a bank’s
financial structure in terms of liquidity, capital ade-
quacy and leverage (Chambers and Charnes 1961,
Cohen and Hammer 1967). See also Beazer (1975),
Brodt (1979) and Spellman (1982).
Current research has stressed two approaches. The
first, based on Markowitz’s (1959) theory of portfolio
selection, assumes that returns are normally distrib-

uted and that bank managers utilize risk-averse utility
functions. The value of an asset then depends not only
on the expectation and variance of its return but also
on the covariance of its return with the returns of all
other existing and potential investments. The second
approach assumes that a bank seeks to maximize its
future stream of profits (or expected profits) subject
to portfolio mix constraints.

A general example of the use of the first approach
is Pyle (1971), who developed a static model in which
the financial intermediary (bank) can select the asset
and liability levels it wishes to maintain throughout
the period. He considers only the risk of the portfolio
and not other possible uncertainties. The model omits
trading activity, matching assets and liabilities, trans-
action costs, and other similar features. It is possible
to develop dynamic models using constructs along
these lines (see, e.g., Kallberg and Ziemba 1981).
However, given the severe computational difficulties
due to the complexity of algorithms for these prob-
lems, it is not at present possible to develop useful
operational models for large organizations such as
banks.
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Since our interest is in operational models, we
concentrate on the second approach, which has theo-
retical and empirical support. Myers (1968) attempted
to determine which criteria are most suitable for the
asset and liability management problem by showing
that: a necessary condition for the existence of secu-
rity market equilibrium is risk independence; security
market equilibrium implies risk independence of se-
curities; and risk independence of investment oppor-
tunities implies that the maximization of the expected
net present value is the appropriate objective criterion.

Thus, if, as is widely believed, the securities held by
financial institutions are in a state of equilibrium, and
securities purchased do not have synergistic effect
(implying the risk independence of securities), then
the appropriate objective function for a financial in-
stitution is the maximization of the expected net
present value (ENPV). Hester and Pierce (1975) used
cross-sectional data to analyze the validity of a number
of portfolio selection models in bank fund manage-
ment. They concluded that banks can be well man-
aged using models as a decision aid and that the best
objective functions are either ENPV or the maximi-
zation of a two-variable function for which ENPV is
dominant.

Asset and liability management models using an
ENPYV criteria can be deterministic or stochastic. De-
terministic models use linear programming, assume
particular realizations for random events, and are
computationally tractable for large problems. The
banking industry has accepted these models as useful
normative tools (Cohen and Hammer 1967). Stochas-
tic models, however, including the use of chance-
constrained programming, dynamic programming,
sequential decision theory, and linear programming
under uncertainty, have achieved little success. This
failure is due to inherent computational difficulties,
the oversimplifications needed to achieve computa-
tional tractability, and practitioners’ unfamiliarity
with these models’ potential.

Essentially all of the deterministic models, and
many of the stochastic models, follow the approach
of Chambers and Charnes’ linear programming
model. They maximize net discounted returns, subject
to budget and liquidity constraints, using the Federal
Reserve Board’s (FRB) capital adequacy formulas (see
Section 3). Examples of successful applications of this
model are Cohen and Hammer (1967), Komar (1971),
and Lifson and Blackman (1973). These models con-
tinue to be criticized largely because they omit uncer-
tainty (Bradley and Crane 1976, Cohen and Thore
1970, and Eppen and Fama 1968). Probability dis-
tributions can be obtained for different economic
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scenarios and a linear programming formulation can
be applied to each scenario to determine optimal
solutions. However, this approach will not generate
an optimal solution to the total problem, but rather
acts as a deterministic simulation to observe portfolio
behavior under various economic conditions. One
must use care in defining such models, since it is
possible that no scenario leads to an optimal solution
(see Birge 1982).

Charnes and Kirby (1965), Charnes and Littlechild
(1968), Charnes and Thore (1966), and others devel-
oped chance-constrained models that express future
deposits and loan repayments as joint, normally dis-
tributed random variables, and that replace the capital
adequacy formula by chance-constraints on meeting
withdrawal claims. These approaches lead to a com-
putationally feasible scheme for realistic situations
(see, e.g., Charnes, Gallegos and Yao 1982). However,
the chance-constrained procedure cannot handle a
differential penalty for either varying magnitudes of
constraint violations or different types of constraints.
Moreover, multiperiod models raise conceptual diffi-
culties, as yet unresolved in the literature, dealing with
the treatment of infeasibility in periods 2, . . ., n (see,
e.g., Eisner, Kaplan and Soden 1971).

The second approach to stochastic modeling is dy-
namic programming. Eppen and Fama (1968, 1969,
1971) modeled two- and three-asset problems. Dael-
lenbach and Archer (1969) extended their work to
include one liability. For a survey of this literature,
see Ziemba and Vickson (1975). These models are
dynamic and account for the inherent uncertainty of
the problem. However, given the small number of
financial instruments that can be analyzed simulta-
neously, they are of limited use in practice. See Dael-
lenbach (1974) for estimates of possible gain using
these models. For a recent survey of related applica-
tions in banking, sece Cohen, Maier and Van Der
Weide (1981).

The third alternative in considering stochastic
models, proposed by Wolf (1969), is a sequential
decision theoretic approach that employs sequential
decision analysis to find an optimal solution through
the use of implicit enumeration. This technique does
not find an explicit optimal solution to problems with
a time horizon beyond one period, because it is nec-
essary to enumerate all possible portfolio strategies for
periods preceding the present decision point in order
to guarantee optimality. To explain away this draw-
back, Wolf makes the dubious assertion that the so-
lution to a one-period model would be equivalent to
a solution provided by solving an n-period model.
This approach ignores, among other things, the
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problem of synchronizing the maturities of assets and
liabilities. Bradley and Crane (1972, 1973, 1976) have
developed a stochastic decision tree model that has
many of the desirable features essential to an opera-
tional bank portfolio model. Their model is concep-
tually similar to Wolf’s model. To overcome compu-
tational difficulties, they reformulated the asset and
liability problem and developed a general program-
ming decomposition algorithm that minimizes the
computational difficulties. This model is discussed in
Section 5.

The fourth approach is stochastic linear program-
ming with simple recourse (SLPSR), which is
also called linear programming under uncertainty
(LPUU). This technique explicitly characterizes each
realization of the random variables by a constraint
and leads to large problems in realistic situations. This
method greatly handicaps modelers; in fact, Cohen
and Thore viewed their model more as a tool for
sensitivity analysis (in the aggregate) than a normative
decision tool. The computational intractability and
the perceptions of the formulation precluded consid-
eration of problems other than those that were limited
both in terms of time periods (Cohen and Thore used
one, and Crane 1971 used two) and in the number of
variables and realizations. Booth (1972) applied this
formulation by limiting the number of possible reali-
zations and the number of variables considered, in
order to incorporate two time periods. Although rel-
atively efficient solution algorithms are available for
solving SLPSR’s (Wets 1966), analysts have solved
these models using an “extensive representation.”

With the possible exception of the Bradley-Crane
model, none of the cited models gives an adequate
treatment of the essential features necessary for an
adequate operational bank asset and liability manage-
ment model that is computationally tractable. An
ideal operational model should contain the following
features:

1. multiperiodicity that incorporates: changing yield
spreads across time, transaction costs associated
with selling assets prior to maturity, and the syn-
chronization of cash flows across time by matching
maturity of assets with expected cash outflows;

2. simultaneous considerations of assets and liabilities
to satisfy basic accounting principles and match
the liquidity of assets and liabilities;

3. transaction costs that incorporate brokerage fees
and other expenses incurred in buying and selling
securities;

4. uncertainty of cash flows that incorporates the
uncertainty inherent in the depositors’ withdrawal
claims and deposits (to ensure that the structure of

the asset portfolio gives the bank the capacity to
meet these claims);

5. the incorporation of uncertain interest rates into
the decision-making process to avoid lending and
borrowing decisions that may ultimately be detri-
mental to the financial well-being of the bank; and

6. legal and policy constraints appropriate to the
bank’s operating environment.

In this paper, we develop an SLPSR model that
essentially captures these features of asset and liability
management while maintaining computational feasi-
bility. Section 2 contains background concerning
SLPSR models and the solution algorithm. The asset
and liability management (ALM) model is described
and formulated in Section 3. In Section 4 we apply
ALM to the operations of the Vancouver City Savings
Credit Union. Section 5 compares ALM to Bradley
and Crane’s model. Final remarks and conclusions
appear in Section 6.

2. Stochastic Linear Programs with Simple
Recourse

The basic (SLPSR) model is
minimize Z(x) = ¢'x + EE[ min (¢*'y* + q"y")]
x=0 yty =0

subject to Ax = b n
Tx+ Iyt —Iy - =¢

wherec, xER", y*, y",q*, g ER™ Aism X n T
is m, X n, I'is a m, = dimensional identity matrix and
¢ is a my-dimensional random variable distributed
independently of x on the probability space (=, F, F).
The SLPSR model is the two-stage process: choose a
decision vector x, observe the random vector &, then
take the corrective action (y*, y7). The model is said
to have simple recourse because the second stage
minimization is fictitious since (y™*, y~) are effectively
unique functions of (x, £).

Beale (1955) and Dantzig (1955) independently pro-
posed the SLPSR model as a special case of the general
linear recourse model that replaces Iy* — Iy~ by Wy
for a general matrix W. Detailed presentations of the
theory of this model appear in Kall (1976), Parikh
(1968), and Ziemba (1974). If we assume that
Ax = b, x = 0 has a solution x° and g* + ¢~ = 0, then
(1) has an optimal solution and is a separable convex
program. If ¢ is absolutely continuous, then Z is
differentiable and (1) may be solved using modifica-
tions of standard feasible direction algorithms (see,
e.g., Wets 1966 and Ziemba 1974). If ¢ has a finite
distribution, then Z is piecewise linear and (1) is



equivalent to a large linear program. Wets (1974)
noted that the deterministic equivalent linear program
can be written in the form

my ki+1

my
minimize ¢’x — Y, Y, (g7 — Fag)va+ X 47 &

i=1 I=1 i=1

subjecttoAx=5b, x=0

., N 2
E LyX; — Z Yi= a;
j=1 =1

vasdy, 0sys<dy O0<yu

where [ = 1, ey Mo, = 2, ey k;, d_;l = En, di1=
S~ i1, @i = g7 +q7, £n <...<{y,are the possible
values of each £;, the ith component of £, with prob-
abilities fi1, . . . , fa, and Fi; = Pr(& < &) = Y2 fi1.

It is possible to develop an algorithm using gener-
alized upper bounding constructs that will solve (2) in
a number of pivots that is of the same order of
magnitude as the number of pivots required to solve
the mean linear programming approximation prob-
lem, i.e., (1) with £ replacing £. The linear program
(2) has the same number of working basis elements,
(m; + m,), as the mean problem. Wets (1974, 1984)
has developed an algorithm that has been coded by
Collins (1975), Kallberg and Kusy (1976). The code
was written to solve problems with up to 70 stochastic
constraints, 220 total constraints and 8 realizations
per random element. The code can be expanded to
solve much larger problems. The International Insti-
tute of Applied Systems Analysis, Laxenberg, Austria
(IIASA) is currently developing more sophisticated
codes to handle larger problems. See Wets (1983) for
extension of his algorithm to the convex case.

Formulation (1) is essentially static, while the asset
and liability management problem is dynamic. We
utilize model (2) and its efficient computational
scheme, while at the same time retaining as many of
the dynamic aspects of the model as possible. To do
so, we utilize the approximation described below. The
general n-stage SLPSR problem is
minimize ¢'’x'

x'=0
Ax=b'

+Ey{ min [q‘*’y““+q‘"’y“+...+

yl+’yl~30

+ minimize [c" ' X"+ Egrgn-togt 3)
x"=0
Ax"=p"

{ min [qn+/yn+ + qn—lyn——]}]' . ]}
y'l"',y'l‘;o

subject to Z Tyx'+ Iyt —Iy~=§ i=1,...,n
J=1
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The approximation procedure aggregates x2, ...,
x" with x! and £2, ..., & with ¢£'. Thus in (1), one
chooses x = (x!, ..., x")’ in stage one, observes { =
(¢%, ..., £") at the end of stage one, and these
steps together determine (y*, y7) = [(py', y"), ...,
(¥™, ¥")] in stage two. This approach yields a feasible
procedure for the true dynamic model (3) that is
computationally feasible for large problems and in-
corporates partial dynamic aspects, since penalty costs
for periods 2, ..., n are considered in the choice of
x!', ..., x". Aggregating all future period decision
variables into x' would make the first period decision
function as if all future period decisions were the same
regardless of the scenario. The decision maker is pri-
marily interested in the immediate revision of the
bank’s assets and liabilities. The ALM model incor-
porates immediate revision by setting apart by an
arbitrarily small time period, times 0 and 1. Point 0
is the bank’s initial position and point 1 is the bank’s
position immediately after running the model. In
practice, the model is rolled over continuously. To
partially overcome the drawbacks of a static solution
technique, the decision variables are defined so that a
security can be purchased in one time period and sold
in one or more subsequent periods.

The feasibility of the SLPSR approximation pro-
vides an upper bound on the true optimal solution to
(3). A lower bound on (3) is provided by Mandansky’s
(1960) linear programming mean model, that is, (3)
with £’ replacing &' for all i. Hence one can bound the
true optimal solution with two easily computable pro-
grams. Specific numerical details of such bounds ap-
pear in Kallberg, White and Ziemba (1982) and Kusy
(1978).

The recourse aspect of the model gives it a dynamic
flavor. The model is two-stage: initially the decision
variables are chosen, next the stochastic variables are
observed, and these two steps determine the recourse
variables (to recover feasibility) and their correspond-
ing penalties. The penalty is a function of both the
constraint violated and the magnitude of violation.
The recourse cost has the effect of restraining “aggres-
sive” choices of decision variables if the costs involved
with regaining feasibility outweigh the benefits. The
ALM model’s dynamic features are embodied in its
continuous rollover, the definition of variables that
permits flexibility, and the recourse aspect of SLPSR.

A problem that arises in most deterministic as well
as stochastic dynamic planning models is the handling
of the end effects. In the formulation of ALM, we
have assumed that the model runs for »n periods; in
the application, # is 5 years. This approach works well
for our situation and our goal of obtaining a good first
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period decision. The most satisfactory theoretical ap-
proach to end effects is Grinold’s (1977, 1983) dual
equilibrium formulation. With this procedure, the
dual variables for periods # + 1, . . . increase in value
with the appropriate interest rate. This result yields an
equivalent one-period constraint set for the infinite
horizon-periods n + 1, .... It is possible to extend
Grinold’s (1977, 1983) deterministic theoretical re-
sults and applications to energy planning models
(Grinold 1980) to the stochastic case, although this
has not appeared in the literature thus far. For ALM,
applying Grinold’s approach would yield one more
set of constraints for a period “6.” We did not make
this further refinement because its added accuracy did
not seem to outweigh the additional computational
costs. However, developers of SLPSR models should
keep this approach in mind in their choice of model
formulation.

3. Formulation of the ALM Model

The ALM model is an intertemporal decision making
optimization tool to determine a bank’s portfolio of
assets and liabilities given deterministic rates of re-
turns and cost (interest rates), and random cash flows
(deposits). Although the asset and liability manage-
ment problem is a continuous decision problem, with
portfolios constantly being revised over time, the com-
putations and analysis involved with a continuous
time process are infeasible for a practical model.
Therefore, the ALM model is developed as a multi-
period decision problem in which portfolios are deter-
mined at discrete points in time (e.g., the end of each
accounting period).
The ALM model has the following features:

1. Objective function: Maximize the net present value
of bank profits minus the expected penalty costs
for infeasibility.

2. Constraints:

a. legal, being a function of the bank’s jurisdiction;

b. budget: initial conditions and the sources and
uses of funds;

c. liquidity and leverage, to satisfy deposit with-
drawals on demand;

d. policy and termination; constraints unique to
the bank, and conditions to ensure the bank’s
continuing existence after the termination of
the model; and

e. deposit flows.

Constraints (a) and (b) are deterministic, (c) consists
of both deterministic and stochastic constraints, (d)
can consist of either deterministic or stochastic con-
straints, and (e) contains only stochastic constraints.

Chambers and Charnes, and Cohen and Hammer
(1967) have justified the use of linear functions to
model a bank’s asset and liability management prob-
lem. Thus from the point of view of linearity, their
analysis establishes the appropriateness of SLPSR. The
recourse aspect is justified with the following argu-
ment. In the banking business, constraint violations
do not imply that the intermediary is put into receiv-
ership. Rather, the bank is allowed to restructure its
portfolio of assets to regain feasibility at some cost
(penalties). With the inherent uncertainties, the asset
and liability management problem is well modeled as
a stochastic linear program with simple recourse.

3.1. Notation for the ALM Model

% = amount of asset k purchased in period i sold in
period j; k=1,...,K;i=0,...,n—1;j=1i
+1,...,n

x& = initial holdings of security k

x% = amount of security k purchased in period i to
be held beyond the horizon of the model

= new deposits of type d in period i; d =1, ...,
D

y& = initial holdings of deposit type d

b; = funds borrowed in period i

yj; = shortage in period j in stochastic constraint s

¥» = surplus in period j in stochastic constraint s

p;. = proportional penalty cost associated with y;

pjs = proportional penalty cost associated with yj;

k = parameter for shrinkage, under normal eco-
nomic conditions, in period j of asset type k
purchased in period i

o, = parameter for shrinkage, under severe economic

conditions, in period j of asset type k purchased
in period i

t* = proportional transaction cost on asset k, which
is either purchased or sold in period i

= return on asset kK purchased in period /

T; = tax rate on capital gains (losses) in period j

7; = marginal tax rate on income in period j

= proportional capital gain (loss) on security k
purchased in period i and sold in period j

v« = the anticipated fraction of deposits of type d

withdrawn under adverse economic conditions

¢? = rate paid on deposits of type d

p; = discount rate from period i to period 0

K, = set of possible current assets as specified by the

British Columbia Credit Union Act

K, =set of primary and secondary assets as defined

in the capital adequacy formula (caf)

K, = set of minimum risk assets as defined in the caf

K; = set of intermediate risk assets as defined in the

caf

X

d
i

yA



g¢; = penalty rate for the potential withdrawal of
funds, in period i, that are not covered by assets
in K] U .U K3

P; =liquidity reserves for the potential withdrawal
of funds, in period i, not covered by assets in

3.2. The ALM Model
K n J
maximize ), [2 x’éf{ X (1= 7)o+ zbi(1 -
x.p,b k=1 | j=2 =2
n—1 n J
+3 5wl 8

i=1 j=i+l I=i+1

+2 X XK1=

j=r; 1=i+1

Jj=l1

n
b
= bocopr — Z bjcfpjﬂ
Jj=1

- EE mln 2 Z pjsy/s + pjsyﬂ

v Jj=1 s€S

subject to

(a) Legal constraints

)

k€K, i=0

D

k€K, i=0

d=1

I=j+1 d=1 Li=0

(b) Budget constraints
i. Initial holdings
¥ XK+ xb = xbs,
j=1
V8 = yéo,
ii. Sources and uses
K n
> [E:x@ + bl + 1 —
k=1 LI=2
j—1

2{ ﬁ x"+x’;}{1 )
k=1 Li=j+1 i=0

I=j

d=1Li=0

+bj_1(1+Cf_))—bj=0, j=2,...,n

Tj)pj} + xb1zo/(1 = T))

Z [2 VI = va/2)(1 = vaY " edp; + Z 1/2ytcip + Y 2 YA = va/2)(1 = va)~ 'c,p,}

D
X oxh+ x,z} - [2 { 2 v+ (= 8201 — yay = + yd/z} + b}

D
x6ifl + z6(1 = T)) — 151 + 2’51)}} + Z[’Ydyg/z - y{/21 - b =0,
d=1
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Kiu.. . UK;

ki = m;th mortgage

£, = discrete random variable in period j for sto-
chastic constraint type s, s € S where S is the
set of stochastic constraints.

-
discounted
- returns and
ril + 7 )p + zj(1 = TJ)PJ} + xle ) rb(1 — TI)PJ] capital gains (net
=2 of taxes) on
assets

net discounted
cost of deposits
(demand and

== time)

cost of direct
borrowing from
other banks and
a central bank

expected penalty
costs for
constraint
violations

__\,_./%,__J_\f_—/

D
{2 X+ x,m} - 0-1{2 v+ (1 = va)v8/2 + yi/2 + bo + bl] =0, Jj=1

j=1

Hi x{‘,+x{‘m}>{r"(l — )} + xEL+ zZ5(1 = T)) — t5(1 + z¢ )}J

=2
- 2[2 Y = v2) " =va) 1 = va/ 2} + (1 = v)yei/2 + ¥9/2 — (1 = va/2)cls — yJ—ICI‘l/zzl
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(c) Liquidity constraints

-3 3

kek i=0l

n
k k
Z X

I=j+1 d=1

Jj
- 2[
k€K UK, i=0 Li=j+1

Jj n
k k kK k
1. — 2 { 2 x,,a,-j+x,-ma,-j]
keK,UK,UK; i=0 Li=j+1

iv.—ié[

k=1 i=0

d=1

I=j+1

D
+ X
d=1 Li=0

(d) Policy constraints

Jj n
-0.1, [ % xkm +x{.‘;g‘]

i=0 Li=j+1

J
+ ), [
i=0 Li=j+1

(e) Deposit flows

j—1
WA Dyl =Yyt = J=1, ..

i=0
(f) Nonnegativity
Xk byl v, v =0 forall i j k d.

There are no discount factors in the constraints
since each constraint refers to conditions in one pe-
riod. The ALM model treats the first two types of
constraints, legal and budget, as deterministic. The
legal constraint states that the current assets cannot
be less than 10% of the total liabilities (as defined by
the Credit Union Act, (British Columbia Government,
Section 106, 1982a). The legal constraints are peculiar
to the locale of the institution being studied. The
budget constraints include the initial conditions and
the accounting identity—uses and sources of funds
are equal. See also Credit Union Regulations (British
Columbia Government 1982b and Barr 1984).

The liquidity constraints follow from liquidity cal-
culations in the Federal Reserve Board’s capital ade-
quacy formula (caf). The requirement that the market
value of a bank’s assets is adequate to meet depositor’s
withdrawal claims during adverse economic condi-
tions is the principal constraint in the caf. The market
value of the bank’s assets should be not less than the
liquidity reserves for disintermediation under severe
economic conditions plus liabilities. This constraint is
the final liquidity constraint in ALM. Although this
constraint is not stochastic, a bank portfolio manager
may violate it because the caf is merely a suggested
guideline rather than a strict regulation. The penalty

D j—
+h+ Y W[go VI = yay N1 = va/2) + J’f"/z] < P3j/q;

n
Y xkm o+ Xf-‘#] +yi—Vs<E&s J

<> 1

D j—1
+ x{;a{;] +b+ ), 7,,[% YA = vV 711 = v4/2) + y;’/2] < Py;/qy.

n D j=1
5 xtat+ xﬁ;aﬁj] b+ 3 wd[go VL = 7y (1 = vaf2) + y;-'/z] < Pola

> (l-ﬁﬁ)xf-‘z"'(l-ﬁﬁ)xﬁo]+J’}}—J’E?Pu"'sz"'Psf"'bf

j—1
[2 YA = vy = va/2) + y}’/Z} +&, Jj=Ll...,n s€ES.

I ...

for a violation of this constraint is Y3, ¢;. This elastic
treatment allows the constraint to be violated when
the benefits of violation exceed the costs. In this
manner, the criticism, levelled at modellers using
FRB’s conservative constraints, can be resolved in a
systematic manner. See Section 4.1.3 for more discus-
sion concerning these constraints.

The FRB’s caf has been used as a suggested dis-
intermediation liquidity guideline for U.S. banks but
is not a legal requirement. Because it is quite conserv-
ative and tends to reflect depression style financial
conditions, its formulas are not currently used by U.S
banks. This policy may change in the future, however,
given the extreme threat to the world banking system
by the many nonperforming loans to countries such
as Argentina, Brazil, Chile and Mexico. In British
Columbia, however, where the Vancouver City Sav-
ings Credit Union operates, the banking establishment
is quite conservative and has continued to use the
caf’s liquidity guidelines. Hence we have used them
in ALM. Besides ALM, the caf is also used in British
Columbia’s Credit Union Reserve Board’s credit un-
ion solvency model. Ellis (1984), the Board’s manager
of research services, who operates the solvency model
as a regulatory tool, feels that “. .. the caf reflects the
limited experience of the credit union movement in
British Columbia when liquidating credit unions.” In
other environments where models such as ALM may
be appropriate, alternative liquidity constraints are



easily handled in the SLPWR formulation, assuming
that such constraints are linear or can be linearized.

The fourth set of constraints is also elastic. These
constraints are introduced to capture the internal pol-
icy of the institution modeled. In reality, minor con-
straint violations of bank policies are usually tolerable,
while more severe violations are increasingly less tol-
erable. The introduction of a piece-wise linear convex
penalty function (via additional constraints) can cap-
ture the dependency between the penalty costs and
the extent of the policy violations. This result is
accomplished by the addition of supplementary
constraints to reflect the increased seriousness of the
magnitude of constraint violations.

The final set of constraints, deposit flows, is sto-
chastic. Since deposit flows are continually turned
over and bear various rates of interest, the model must
reflect the gross (and not net) flows during an account-
ing period. This property of the problem was incor-
porated in the model by establishing a proportional
outflow (statistically calculated by the FRB and cor-
roborated for use in British Columbia by White and
Dobrzanshi 1976) of old funds during each period.

We now develop the three types of liability expres-
sions in the ALM formulation. The deposit flow con-
straints represent the total amount of new deposits in
the jth period. The total amount of new deposits of
type d generated in period j yields the equation

J=i
¥+ Xyl = vy = BS],
where y¢ is the total amount of new type d deposits in
period j, v4 is the annual rate of withdrawal of type d
deposits, and BS¢ is the discrete random variable
representing the balance sheet figure of type d deposits
at the end of the jth period.

The second type of liability expression represents
the total amount of deposits outstanding during a
period. Since the model is discrete, an approximation
to the continuous flow is made by assuming that half
of a period’s net flows arrive at the beginning of the
period and the other half arrive at the beginning of
the next period. During the first period, the funds
available are

8 + (1 = va)¥8l/2 + /2,

and for period j, they are

j—1

2 A = vy (= Y2 + yi/2,
=0

or

j-1

2 VAL = vd/2X1 = ya) "+ pi/2.

i=0
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This expression is used in the objective function and
in the legal and liquidity constraints. The third liability
expression is the incremental increase (decrease) of
deposits from one period to the next. We use this
incremental difference in the sources and uses con-
straint. For period j the incremental difference is

[2 VI = va/2)(1 = yay ™ + J’]"/Z}

i=0

=2
- [go Y = va/2X1 = ya) ™2 + y}'-l/Z]

j—2

= 2 A1 = vaY " ~va(1 = v4/2)]

=0
+ (1= va)y/2 + yi/2.

3.3. Data Required to Implement the ALM Model

To implement the ALM model requires the following
data:

1. the identification of assets in which the bank can
potentially invest;
2. point estimates of the returns on these assets;
3. point estimates of capital gains (losses) as a func-
tion of the time the bank holds the assets;
4. identification of the liabilities that the bank can
potentially sell;
5. point estimates of the costs of these liabilities;
. the rate at which deposits are withdrawn;
7. an estimated weighted cost of funds to determine
the discount rate;
. pertinent legal constraints;
9. parameters used in the development of liquidity
constraints;
10. policy constraints used by the bank;
11. estimates of the marginal distributions of the sto-
chastic resources; and
12. unit penalties incurred for shortage or surplus in
the stochastic constraints.

(=)}

oo

Remarks. a. Since the ALM model has a separable
objective, only the marginal distributions of the com-
ponents of the resource vector are needed to find the
optimal solution.

b. The shortage (y*) and surplus (y~) variables have
specific meanings in the ALM formulation. Consider
a realization £#’ of the random deposit £%. If

J=i

W+ }_Joy:»’(l — va) T < £,

then y* >0 and y~ = 0, assuming p* + p~ > 0; y*is
the amount of funds that could have been used for
investment purposes in the ALM. Since the cost of
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deposits is usually lower than the returns on assets,
the bank would want to utilize all available funds.
A penalty p* > 0 for the opportunity cost can be
determined by assuming that the funds not used can
be invested in earning assets. The y* dollars would be
available at rate ¢ and invested in some asset at a rate
r. The penalty, p*, equals (r — ¢) discounted to point
0 plus the net discounted returns on y*(r — c) to the
horizon of the model (the profits that could have been
generated).
If

=i
i+ B = vy > g

then y~ > 0 and y* = 0, and a surplus occurs. The
bank would then have to divest itself of some earning
assets. The cost, p~, of this action is (r — ¢) discounted
to point O plus the net discounted returns on
y~(r — ¢) to the horizon of the model (that is, the
profits that would have been generated with unavail-
able funds). Both p* and p~ are positive, and profit is
lowered if either too little or too much is invested.

4. Application of ALM to the Vancouver City
Savings Credit Union

This section considers an application of the ALM
model to the asset and liability portfolio problem of
Vancouver City Savings Credit Union (VCS). We also
discuss procedural aspects of implementing the model
for this and related institutions. This study was
prompted by the VCS’s continual liquidity prob-
lem, and focuses on the five year planning period
1970-1974.

During this period, the firm’s assets grew at a
compound rate of 57%/year from $26 million to
$160 million, and it developed an aggressive policy of
investing in high yielding assets, predominantly mort-
gages. In 1974, VCS realized that the combination of
their aggressive investment policy and changing mar-
ket conditions was creating serious liquidity problems.
Investors were trading low yield term deposits for
higher yield deposits. Meanwhile, outstanding mort-
gage loans were still earning returns on the basis
of lower fixed rates. At that point, this study was
initiated.

4.1. Model Details

We now describe the input necessary to implement
the ALM model at VCS. This discussion focuses on
general concepts concerning methods of data collec-
tion, choice of decision variables, constraints and ob-

jective function. The actual data, a 92 X 257 input
matrix, appear in Kusy.

The first-stage variables are assets (x{;) and liabilities
(v¢ and b,). There are eleven asset types:

1. cash;

2. British Columbia Central Credit Union shares;

6. federal government bonds maturing in | =
1,..., 4 years;

7. federal government bonds maturing in 5-10
years;

8. provincial government bonds maturing in
more than 10 years;

9-10. first and second mortgages with a 3-year term;

and

11. personal loans.

Six types of liabilities are considered:

1. demand deposits;
2. share capital of VCS;
3. borrowing from banks; and
4-6. term deposits maturing in i = 1, 3, 5 years.

These asset and liability types generate 132 and 36
variables, respectively, including initial positions. For
example, a 4-year federal government bond purchased
at the beginning of the third time period generates
decision variables x$,, x$s, and x$., where x$, and
x$s are the amounts of the initial investment to be
sold in period four and five, respectively, and x%., is
the amount to be held at the horizon. The choice of
assets and liabilities was based on VCS’s historical
portfolios (1968-1975), so that comparison between
actual portfolios and ALM generated portfolios could
be easily made. Although cash flows are continuous
over time, the model assumes that all transactions
occur at the beginning of periods. Cash flows during
any period are modeled by assuming that half the flow
occurs at the beginning of the present period and the
other half at the beginning of the next period. The
model has the following constraints.

4.1.1. Legal Constraints

The source for legal constraints is the Credit Union
Act of British Columbia (British Columbia Govern-
ment 1982a), which places three operational restric-
tions on the composition of the portfolio of assets and
liabilities. The first constraint requires that credit
unions maintain at least 10% of the total of non-
equity shares, deposits and borrowings (denoted by
the set 7) in high liquid assets (denoted by the set I,):

z Xi = 0.1 z Xis-

iel, iely,



The second requirement states that credit unions
must maintain at least 1% of their nonequity shares,
deposits and borrowings in cash and term deposits:
=001 Y yu.

i€D

X1+ Xy

The final constraint restricts the credit union’s bor-
rowing from opportunities denoted by the set B, to
one half of the nonequity shares, deposits and statu-
tory reserve account:

2 Yo = 0.5 2 Vi
beEB ieD

Since the planning horizon has 5 periods, the legal
requirements account for 15 constraints.

4.1.2. Budget Constraints

There are 22 budget constraints: 17 establish the initial
positions of the 11 asset and 6 liability types, and 5
require the sources and uses of funds to be equal in
each period.

4.1.3. Liquidity Constraints

The liquidity constraints ensure that the firm has
sufficient capital reserves to meet severe withdrawal
claims under adverse economic conditions. The ap-
plication of the FRB’s capital adequacy formula to
British Columbia’s credit unions is described in the
1973 Credit Union Reserve Board report.

The first three constraints establish capital reserves
based upon the structure of the portfolio of assets and
liabilities:

P,;q,(W— D ak> i=1,23,
keK\U...UK;

where P; is the required reserve necessary to meet the
excess withdrawal claims, g; measures the reserves
required for potential withdrawal claims that exceed
the realizable portion of the assets contained in
KU ... UK,, a4 is a parameter that measures the
realizable portion of the value of asset k if the asset is
to be liquidated quickly under adverse economic con-
ditions, and W = Y72, v,y; is the dollar value of the
expected withdrawal claims under adverse conditions,
where v; measures the contraction of liability y, under
adverse economic conditions. The +’s used were
0.47 for demand deposits, 0.36 for term deposits
and 1.0 for borrowing; see White and Dobrzanshi
for justification.
The assets are classified as follows:

1. “Primary and Secondary Reserves”: (K;), which
include cash, treasury bills, and government bonds
of less than 5 years’ maturity;
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2. “Minimum Risk Assets” (K3), which include gov-
ernment bonds with more than 5 years’ maturity,
and municipal bonds; and

3. “Intermediate Assets,” which include mortgage and
personal loans. The principal constraint is

K 3 total right-surplus-
Y (1= B8)x;= Y P;+ » equity-hand side
i=1 i=1 of balance sheet

where (3; is a parameter to measure the shrinkage
of asset i/, when the asset is to be liquidated quickly.
The values used for ax, g;, and §; are those sug-
gested by the FRB (Crosse and Hempel 1973).
Since our purpose is not to develop an operational
model for VCS, but rather to demonstrate the
applicability of the ALM model, the parameter
values used provide an adequate proxy. In the
development of an operational model, it would be
necessary to estimate the parameters. Since these
constraints hold for all 5 periods, there are 20
liquidity constraints.

4.1.4. Policy Constraints

Two types of policy constraints are included:

1. personal loans should not exceed 20% of the first
mortgage loans in any period ¢, x,; < 0.2x,,; and

2. second mortgages should not exceed 12.5% of first
mortgages, X, < 0.125 x,»,.

The rationale is that, since returns on first mortgages
are less risky than second mortgages or personal loans,
some first mortgages are desirable (even though they
may have lower returns) to respond to management’s
preference for a less risky portfolio. These constraints
may be violated without legal implications and are
modeled by treating the constraints as stochastic using
(p*, p7) = (0, 1). There are 10 such constraints over
the 5 periods.

4.1.5. Deposit Flows

The variable y¢ represents new deposits of type d =
l,...,5generated in period j=1,..., 5, and £, is a
discrete random variable representing the balance
sheet of deposit type d at the end of period j. The

deposit flow constraints are

i
J—i

.Vj + Zoy a- 'Yd)j—l + y/d Via = gjd’

where the v’s (1.0 for demand deposits and 0.36 for
term deposits) are included to relfect the gross flow of
deposit funds. We estimated the distribution of £,
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Table 1
Discount Rate Factors
1970 1971 1972 1973 1974
Average yearly yield 0.0559 0.0356 0.0356 0.0547 0.0782
Multiperiod discount factor 0.9435 0.9110 0.8797 0.8341 0.7736
w(1/(1 + AYY}))
Table 11
Returns on Assets
Returns on Asset by Year
Type of Asset
1969 1970 1971 1972 1973 1974
1-year federal government bond 0.0725 0.0620 0.0450 0.0510 0.0610 0.0800
(fgb)
2-year fgb 0.0749 0.0657 0.0490 0.0550 0.0654 0.0803
3-year fgb 0.0758 0.0684 0.0525 0.0590 0.0680 0.0807
4-year fgb 0.0767 0.0710 0.0555 0.0626 0.0698 0.0810
S-year fgb 0.0776 0.0758 0.0615 0.0674 0.0717 0.0827
10-year provincial government 0.0840 0.0904 0.0803 0.0813 0.0836 0.0991
bond
First mortgage 0.0938 0.1040 0.0943 0.0921 0.0959 0.1124
Second mortgage 0.1050 0.1220 0.1108 0.1083 0.1123 0.1321
Personal loans 0.1040 0.1170 0.1075 0.1050 0.1075 0.1275
BCCU shares 0.0600 0.0600 0.0600 0.0600 0.0700 0.0700

using the balance sheet figures of VCS for 1970-1974;
see Kusy for specific estimates.

The penalties for shortages associated with these
constraints are:

1. for demand deposits and share capital, p* is the
total discounted return on a l-year term deposit
minus the discounted cost of the funds calculated
to the horizon of the model;

2. for term deposits maturing in 1 or 3 years, p* is
the total discounted return on a 5-year term deposit
minus the discounted cost of the funds over the
model’s horizon; and

3. for term deposits maturing in 5 years, p* is the
total discounted return on a 10-year provincial
government bond minus the discounted cost of the
funds over the horizon.

The penalties p~ for surpluses associated with

the deposit flow constraints are the total discounted
returns on first mortgages minus the discounted
costs of funds over the horizon. The penalty ap-
proach attempts to model a conservative manage-
ment strategy with surplus funds when realized
sources exceed uses and when there are shortages.

4.1.6. Objective Function

The objective is to maximize the expected discounted
revenues minus expected discounted costs, including
penalty costs. The source for data on the returns on
the federal and provincial government bonds is the
Bank of Canada (1975). The source for the returns on
BCCU shares, demand deposits and share capital is
Vancouver City and Savings Credit Union (1968~
1975).

The discount rate used was the time value of money.

Table III
Returns on 5-Year Bonds

Decision
Variable
X,

Return 7};

X% (0.0758)(0.9435) = 0.0720

X1 (0.0758)(0.9435 + 0.9110) = 0.1410

Xl (0.0758)(0.9435 + 0.9110 + 0.8797) = 0.2070

Xis (0.0758)(0.9435 + 0.9110 + 0.8797 + 0.8341) = 0.2700

X (0.0758)(0.9435 + 0.9110 + 0.8797 + 0.8341 + 0.7736) = 0.3290
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Table IV
Cost and Liabilities of Credit Union

Cost of Liability by Year

Type of Liability
1969 1970 1971 1972 1973 1974
1-year term deposit 0.0712 0.0780 0.0720 0.0680 0.0780 0.0990
3-year term deposit 0.0750 0.0820 0.0760 0.0690 0.0820 0.0980
S-year term deposit 0.0785 0.0850 0.0800 0.0800 0.0850 0.0975
Demand deposit 0.0400 0.0460 0.0410 0.0420 0.0560 0.0770
Share capital 0.0500 0.0500 0.0500 0.0550 0.0575 0.0800

The risk-free rate (the average yield on 3-month treas-
ury bills) (Bank of Canada 1975) is given in Table I.

The returns on the assets (Bank of Canada 1975,
Vancouver City Savings Credit Union 1968-1975) are
given in Table II.

Purchase of a 5-year federal government bond in
1970 would generate decision variables X{,, XT3,
X14, XI5, and X .. The returns are the interest earned
each year, discounted to the beginning of the planning
horizon, and are given in Table III.

The costs of the liabilities (Vancouver City Savings
Credit Union) are given in Table IV.

The cost of a 5-year term deposit (y3) sold during
1970 is shown in Table V.

4.2. Results of the VCS Application

This application demonstrates applicability of the
ALM model and tests the sensitivity of the solution
generated. To accomplish these goals, we ran the basic
model along with several variants that used modified
penalty costs and probability distributions, as well as
a deterministic model with all random variables re-
placed by their means.

The basic model has symmetric, 3-point probability
distributions (0.2, 0.6, 0.2) for the deposit flow con-
straints and degenerate probability distributions for
the liquidity and policy constraints. The penalties for
all stochastic constraints are asymmetric. The opti-
mal value of the basic model is $2,520,316.01
($8,288,941.53 in expected profits minus $6,282,885
in expected penalties). As shown by Madansky (1960)
the mean model provides an upper bound on the

Table V
Cost of 5-Year Term Deposit
Year Cost
1970 (0.5)(0.0850)(0.9435) = 0.0401
1971 (0.82)(0.0850)(0.9110) = 0.0635
1972 (0.82)(0.64)(0.0850)(0.8797) = 0.0392
1973 (0.82)(0.64)%(0.0850)(0.8341) = 0.0238
1974 (0.82)(0.64)*(0.0850)(0.7736) = 0.0141

Total Cost 0.1807

optimal value of a stochastic linear program; in this
instance, the bound is 8.3% above the optimal value
of the basic model, or $2,729,502.24. The solution to
the mean model, when used as a feasible point in the
basic model, provides the lower bound of $2,278,187,
some 9.6% less than the optimal value. The structure
of the two portfolios is similar in the initial period;
however, the investment patterns differ in later pe-
riods. In particular, the basic model invests less heavily
in less liquid assets (namely mortgages). See Kusy for
specifics.

The mean model was initially infeasible, since the
initial portfolio held by VCS violated the liquidity
constraints (a situation known to management). To
secure feasibility, we added variables to the liquidity
constraints. The objective coefficients of these vari-
ables were the same as the penalties associated with
violating the stochastic liquidity constraints in the
basic model. To develop further insight into the op-
erations of VCS, we could set the penalties arbitrarily
high so that the model would vioalte the liquidity
constraints only to attain feasibility. The amount by
which the constraints are violated will be the amount
of liquid reserves that the firm needs to meet the
FRB’s suggested liquidity requirements. _

Variants of the basic model were run in order to
ascertain the effects of different probability distribu-
tions, penalty costs and parameter values. The initial
change was the alteration of the first legal constraint
from the requirement that current assets be at least
10% of the liabilities to at least 1% of the liabilities.
This change increases the optimal value of
$2,906,773.53 ($8,657,619.24 in expected profits
minus $5,750,845.71 in expected penalties). For the
initial two periods, the investment pattern deviated
substantially from that of the basic model in that more
of the incremental funds were allocated to longer term
assets. After the first two periods, there was no gener-
alizable behavior in the investment patterns of the
two models.

The basic model was then further altered to include
a change in the probability distributions (0.05, 0.50,
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0.45) of the cash flows. The optimal value increases
to $3,256,500.65 ($8,872,911.53 in expected profits
minus $5,661,410.80 in expected penalties). The ex-
pected net profit rises compared with the basic model
and the model with the parameter change, while the
expected penalty costs decrease in both cases because:

1. all the violations of the stochastic constraints are
now feasible only with a probability 0.05 instead
of 0.2 (decreased penalties); and

2. constraints that were not violated in the basic
model because of excessive penalties are now vio-
lated in the modified model by 15%, resulting in
more profits.

Although it is not possible to make definitive gen-
eralizations from these runs of the ALM model, some
conclusions may be inferred. First, the asymmetry of
the probability distibutions may have a substantial
effect on the optimal solutions and values. Of partic-
ular importance is the sensitivity of the estimate of
the probability distribution around the value on the
left-hand side of the stochastic constraints. Second,
the solutions are sensitive to changing penalty costs.
Third, the various stochastic models have substantially
different solutions than the mean model. This result
indicates that reliance on the deterministic models as
normative tools can lead to erroneous solutions.
Fourth, the implementation of this model is no more
difficult than the implementation of a similar deter-
ministic model. Finally, solving the ALM formulation
requires the same order of computations necessary for
the mean or related deterministic models. (Kallberg,
White, and Ziemba found similar conclusions on a
SLPSR model of short-term financial planning.) The
runs were made on the University of British Colum-
bia’s IBM 370/168. The ALM model is 92 variables
and 257 constraints, with 40 stochastic constraints.
Using the SLPSR code (Kallberg and Kusy), the ALM
model’s solution took 37 seconds of CPU time. To
solve an equivalent sized deterministic problem took
30 seconds using the SLPSR code and 17 seconds on
the standard linear programming code UBC LIP. Ex-
perience in solving SLPSR models and related deter-
ministic problems indicates that the CPU times are in
a ratio of about 1.5-2 to 1. Detailed output appears
in Kusy.

5. Comparison of the ALM and SDT Approaches

The asset and liability management problem is a
continuous decision problem in which actions (e.g.,
portfolio revisions) are made continuously on the basis

of new information (e.g., differing forecasts of future
interest rates, and the like). The ideal way to model
the ALM problem would be via a continuous, time-
adaptive stochastic dynamic program. At present such
a formulation is computationally intractable for the
types of problems we are considering. ALM, and
Bradley and Crane’s stochastic decision tree model
(SDT), which is described in this section, constitute
two types of operational models that discretize time
and probability distributions. In this section, we sim-
ulate a large number of economic scenarios to com-
pare these two models.

5.1. The Bradley-Crane Stochastic Decision Tree
Model (SDT)

The Bradley-Crane (1972, 1973, 1976) model de-
pends upon the development of economic scenarios
that are intended to include the set of all possible
outcomes. The scenarios may be viewed as a tree
diagram for which each element (economic condi-
tions) in each path has a set of cash flows and interest
rates. The problem is formulated as a linear program
whose objective is the maximization of expected ter-
minal wealth of the firm. There are four types of
constraints:

A. cash flow—the firm cannot purchase more assets
than it has funds available;

B. inventory balancing, which ensures that the firm
cannot sell and/or hold more of an asset at the end
of a period than it held at the beginning;

C. capital loss, which does not allow the net realized
capital losses in a period to exceed some pre-
specified upper bound; and

D. class composition, which limits the holding of a
particular asset.

The basic formulation is

K N—-1
maximize ), p(ex) ), { ¥ [Vh(em) + vk nlen)Hen(en)

eNEEN k=1 Lm=0

+ [yi(en) + v’,i,N(eN)]b’,i,(eN)}

subject to

K K n-2
A) 2 bi(en) — 0, [2 V()M ns (€n-1)

k=1 Lm=0
+ y/r:—l(en—l)bs—l(en—l):l
K n—1

-2 X[+ ghae)lskae) = file) (Cash flows)

k=1 m=0



B) — hhpmi(en = 1) + sha(en) + hialen) =0,
m=0,...,n—2
= bi-i(enr) + Shoia(en) + hi-ia(en) = 0,
&o(eo) = hi (Inventory Balance)
K et

C) — X Y ghalenshale) < Lie)

k=1 m=0

(Capital Losses)

D) 2 I:bfr(en) + 2:0 hf,,,,(e,,)}(é)CL,(e,,), i= 1, A

kek’
(Category Limits)
bin(en) =0, skalen) =0, hialen) <0,
m=1,...,n—1
(Nonnegativity)
where
e.€E;;n=1,...,N;
k=1,...,K
e, is an economic scenario from period 1 to # having
probability p(e,);

E, is the set of possible economic scenarios from

period 1 to n;

K; is the number of assets of type i, and K is the total
number of assets;

N is the number of time periods;

y%(e,,) is the income yield per dollar of purchase price

in period m of asset k, conditional on e,,;
v¥ ~(ey) is the expected terminal value per dollar of

purchase price in period m of asset k held at the

horizon (period N), conditional on ey;
bk(e,) is the dollar amount of asset k purchased in

period n, conditional on e,;

h*,.(e,) is the dollar amount of asset k purchased in
period m and held in period #, conditional on e,;
sk .(e,) is the dollar amount of asset k purchased in
period m and sold in period n, conditional on e,;
gk .(e,) is the capital gain (loss) per dollar of purchase

price in period m of asset k sold in period #;

f:(e,) is the incremental increase (decrease) of funds
available for period #;

L,(e,) is the dollar amount of maximum allowable
net realized capital losses in period #; and

Ci(ey) is the upper (lower) bound in dollars on the
amount of funds invested in asset type i in

period n.

The SDT formulation is a true dynamic model. The
first decision (immediate revision, h& (e)), b*(e)),
s&i(e))) has as its feasible set the intersection of all
possible realizations. That is, the current solution
must be feasible for the set Ex. This decision is con-
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ditional on the realization of economic events in the
first period. Similarly, in each succeeding period to
the end of the planning horizon, the decisions gener-
ated are all conditional on the states of nature that
have occurred up to the current decision point.

The model has a number of attractive features,
including its dynamic nature and associated clever
solution using decomposition. However, the formu-
lation has features that detract from its practicability.
The capital loss and category limit constraints have as
upper (or lower) bounds amounts (resources) gener-
ated arbitrarily by portfolio managers rather than
through a systematic procedure. For example, no con-
sideration is given to the portfolio mix in the devel-
opment of bounds, except in the sense that upper (or
lower) bounds are placed on asset categories. At some
point, this situation may imply that the bank has
invested a disproportionate amount of its available
funds in long-term bonds compared to the amount of
short-term liabilities held. Also, the formulation does
not have any liquidity constraints. Since the capital
loss and category limit constraints actually determine
the composition of the solution, the arbitrary nature
of the choice may bias the solution.

One feature of the SDT model is that first period
feasibility is assured for every possible scenario. Such
fat formulations (see, e.g., Madansky 1962) shrink
the feasible set and give substantial importance to
scenarios with low probabilities of occurrence. For
example, consider the two-period problem for which
an investor:

1. has $100 in period 1 to invest in asset x;, with
return 7;; = 0.1 maturing after one period, or X,
with return ry, = 0.2 per period maturing after two
periods;

2. receives in period 2 either an additional $50 to
invest with probability 0.9 or loses $50 with prob-
ability 0.1;

3. has, in period 2, the opportunity to invest in a one-
period asset x,; with return 7,; = 0.1 or can sell off
his holdings in x;, at a 20% discount; and

4. stipulates that his realized capital losses cannot
exceed 10% of the outstanding funds in any period.

The linear programming optimal solution is b!(/;)
= 11.11, b}(/,) = 88.89, bi(l) = 80.00, hi(L,) = 0,
(b)) = 88.89, hi(l,) = 63.89, Sih(l) = 11.11,
Staln) = 11.11, St(hy) = 0, ST(l2) = 25.00, with
optimal value $42.87, where “b” means buy, “4” hold,
and “s” sell and the /’s denote the possible scenario of
events. The bound on realized capital losses is binding.
If a maximal loss of 15% were allowed, it would be
optimal to purchase $100 of asset x;, and sell $37.50



370 / Kusy AND ZIEMBA

Table VI
Size of Bradley-Crane Model
Number of:
Possible
. Realiza-
Model Assets Cl?:ss::,s Pg?(.)lgs ti;)er;s Variables Constraints
Period
) 8 1 3 3 656 319
2) 30 5 3 3 2,460 1,141
3) 30 5 3 5 6,120 2,827
) 30 5 5 5 246,120 116,827

of x;, at the end of period 1, if the $50 is lost. This
modification yields an optimal value of $44.11. Thus
consideration of this low probability event signifi-
cantly alters the optimal solution. By contrast, in the
simple recourse ALM formulation, the right-hand
sides are not binding; recourse at a penalty cost is
allowed to compensate for decision infeasibility. The
recourse formulation has more first-period decision
flexibility than the decision tree formulation.

To gain computational tractability, the SDT model
considers only bonds. If D is the number of possible
realizations per period, # is the number of time pe-
riods, 7 is the number of asset claims, and K is the
number of assets, then the number of variables is
(B3+ 5D+ 7D*+ ...+ (2n+ 1)D""). The number of
constraints equals the sum of the cash flow constraints:
(1 + D+ D*+ ...+ D", the capital loss constraints
(1 + D+ D*+ ...+ D""), the category limit con-
straints () (1 + D + D*> + ... + D), the inventory
balance constraints (K) (I + 2D + 3D* + ...+ nD"™),
and the initial conditions K. Table VI shows the effect
of differing numbers of assets, possible realizations per
period, and number of periods on problem size.

Bradley and Crane (1976) solved model (1) in 68
seconds on an IBM 360/65. The subsequent models
add more realism and are much larger. In the case of
(4), the basis of the master problem, if one uses
decomposition, has 5467 rows and the problem has
about 850,000 nonzero elements. The computational

and data-handling difficulties of (2) and (3) are less
striking but remain formidable. Bradley and Crane
(1976, p. 112) are aware of these computational diffi-
culties:

Unfortunately, taking uncertainty explicitly into account
will make an asset and liability management model for the
entire bank computationally intractable, unless it is an ex-
tremely aggregated model. The complexities of the general
dynamic balance sheet management problem are such that
the number of constraints and variables needed to accurately
model the environment would be very large.

Our aim has been to develop a computationally
tractable model that still has some dynamic and other
desirable features and represents a practical approach
to bank asset and liability management. We now
compare the ALM and SDT models via simulation.

5.2. The Economic Scenarios

To maintain computational feasibility for the SDT
model, we considered only three assets and one liabil-
ity over three periods. The assets are a one-period
treasury bill, a term deposit maturing beyond the
horizon of the model and a long-term mortgage. The
liability is a demand deposit. The returns and costs of
these financial instruments were generated from 26
consecutive observations using data from the Bank of
Canada. To obtain a reasonable correlation of interest
rates, the returns and costs were made a function of
the prime rate using the following distribution of the
prime rate (R):

Pr(R=r)6/26 3/26 1/26 2/26 1/26 2/26 4/26
r 0.06 0.065 0.0675 0.075 0.0775 0.08 0.085

Pr(R=r)2/26 2/26 2/26 1/26
r 0.09 0.095 0.11 0.115

The distributions in Table VII were derived for the
difference between the prime rate and the rate of
return of each of the four financial instruments, where
the random variables, M, D, T, and L are defined to
be the difference between the prime rate and the

Table VII
Distributions Derived from Difference between the Prime Rate and Rate of Return of Financial
Instruments

m P(M < m) d P(D <d) t AT <1) l PL<I)
0.0037 0.0 -0.0104 0.0 —0.0388 0.0 —-0.0275 0.0
0.0088 0.2 —-0.0072 0.2 -0.306 0.2 —0.025 0.2
0.0198 0.42 +0.0008 0.44 —0.0253 0.5 -0.0225 0.31
0.0235 0.62 +0.004 0.5 —0.0225 0.77 -0.2 0.92
0.0297 0.81 +0.118 0.78 -0.0174 0.81 -0.175 1.00
0.0338 1.00 +0.0195 1.00 —0.0051 1.00




mortgage rate, term deposit rate, treasury bill rate and
liability rate, respectively. At time zero the investor
has $100,000 in demand deposits invested equally in
the three assets. The demand deposits are assumed to
increase (decrease) uniformly from one period to the
next on [—20,000, 20,000]. If the demand deposits
decrease so that assets must be liquidated, then the
FRB’s parameters for quick liquidation are used. The
discounts for treasury bills, term deposits, and mort-
gages are 0.5%, 4%, and 6%, respectively. The con-
straints on the investor are of the BC type and include
1) cash flows, 2) capital losses, 3) class composition,
and 4) terminal conditions. The capital loss con-
straints assume that the investor does not want to
realize net losses of more than 3% of the outstanding
demand deposits in periods 1 and 2, and 4% in period
3. The class composition constraints limit the investor
from having more than $50,000 in total investments
in any asset in periods 1 and 2, and $60,000 in period
3. The terminal constraints include a discount on the
assets in the current portfolio so that all funds are not
simply invested in the highest yielding assets and held
to the horizon of the model. These discounts are one-
half of the normal discounts. The objective of the
model is to maximize the net expected returns.

5.3. Formulations of the Stochastic Dynamic
Programming Model

Formulating the SDP requires the establishment of an
economic scenario over the three-period horizon. This
scenario includes a representative distribution for cash
flows and the rate of return for the various financial
instruments. Since for computational tractability SDP
requires crude approximations of probability distri-
butions, we limited to two the number of possible
realizations of the random variables during each time
period. With initial demand deposits of $100,000 and
an incremental difference in the interval [—20,000,
20,0001, a natural 2-point distribution is $90,000 and
$110,000 with equal probabilities. Using this dis-
tribution, we maintained the mean of the underly-
ing distribution, although the variance was smaller
(1.0 x 10° versus 1.33 X 10°). The distribution was
constructed similarly at the third decision point. The
cash flows have the distribution shown in Figure 1.

Using the same approach gives the first period rate
of return for a particular financial instrument (assume
mortgage rate) as the median prime rate (R) plus the
median of the difference between the prime rate and
the rate of return of the mortgages (M). The two-
point estimate in the second period is R plus m, where
P(M < m) = 0.25. The four rates of return in the third
period are R + m where P(M < m) is 0.875, 0.625,
0.375, and 0.125, respectively.
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110,000 120,000
(.5) (.25)

100,000

(.25)
100,000

100,000
(.25)

90,000 80,000
(.5) (.25)

Figure 1. Cash flow distribution.

Figure 2 specifies the distribution of the rates of
return used in this example.

For the simulation, we used 70% of the noncheck-
ing rate as the demand deposit rate since the non-
checking rate dominates the treasury bill rate, a situ-
ation that would have precluded investment in treas-
ury bills a priori. This ad hoc derivation of the demand
deposit rate does not impinge on the usefulness of the
simulation because the objective is to demonstrate
that one solution technique may be operationally
superior.

Treasury bills mature after one period, hence 18
variables define all potential investment opportunities.
Since the term deposits and mortgages mature beyond
the horizon of the model, 42 variables are required to
describe all investment opportunities in each of these
categories. The variables necessary to define the de-
mand deposits include the initial position, the demand
deposit flows in period 1, two demand deposit flows
in period 2, and the 4 demand deposit flows in period
3. In all, 110 variables define the investment oppor-
tunities in the problem.

There are 4 types of constraints. Constraints 1 to 7
are the cash flow requirements for each period under
each economic scenario; namely, uses of funds equal
sources of funds. Constraints 8 to 14 require realized
capital losses to be less than 3% of the outstanding
demand deposits in period 1 and 2, and 4% in period
3. Constraints 15-35 limit the funds invested in each
asset, as prescribed in the problem. Constraints 36-89
(inventory balancing) consist of the initial holdings of
each of the four financial instruments and record the
transactions in each economic scenario.

The demand deposit flow constraint for period 1
places an upper bound on the funds potentially avail-
able for investment. The capital loss constraints and
the composition constraints add another 28 slack vari-
ables to the formulation. The SDT formulation has
89 constraints and 139 variables.

The objective is to maximize the expected value of
the net returns from the portfolio over the horizon of
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Figure 2. Distribution of rates of return.

the model. The coefficient of each variable is the
product of the net return and its probability of occur-
rence.

5.4. Formulations of the ALM Model

The ALM uses the same information as the SDT
model although it has fewer constraints because of its

different treatment of uncertainty. The investment
opportunities for treasury bills, term deposits, mort-
gages, and demand deposits are defined by 6, 11, 11
and 4 variables, respectively. There are 25 constraints,
of which 5 are stochastic. The key constraints are:

(1) 3 constraints to balance the initial holding of an
asset with the future buying and selling of the
asset;

(i) 3 constraints that equate the cash flows for the 3
periods;

(iii) 3 constraints for each of the 3 assets for compo-
sition requirements;

(iv) 4 constraints to describe the initial position of
the 3 assets and 1 liability;

(v) 3 capital loss constraints of which the first pe-
riod’s is deterministic as constraints (i) to (iv)
listed above, and the others are stochastic; and

(vi) 3 stochastic constraints that describe the flow of
demand deposits.

When we add 9 slack variables for the class composi-
tion constraints and 1 for the deterministic capital loss
constraint, the SLPR formulation has 25 constraints
and 42 variables, plus the recourse variables.

The right-hand sides of the stochastic demand de-
posit constraints are representative points from the
uniform distribution used in the SDT model. How-
ever, because of the ability of the Wets algorithm to
handle many realizations without creating computa-
tional difficulties, the number of points chosen is
larger than in the SDT model. The penalty for viola-
tions of any of these constraints is the net return to
the horizon of the model, generated by a portfolio
consisting of 50% mortgages and 50% term deposits,
since their portfolio is considered, a priori, to be
potentially the highest yielding portfolio. This penalty
is

0.5[(1 + 7" = 11+ 0.5[(1 + 7)* "= 1] = [(1 + F)*" = 1],

where n =1, 2, 3 is the period; 7., is the median return
on mortgages; 7, is the median return on term deposits;
and 7, is the median cost of demand deposits.

The right-hand sides of the stochastic capital loss
constraints are the representative points used in the
SDT formulation. A penalty of 4.1% is used for viola-
tions of these constraints.

The objective is to maximize the net returns minus
the expected penalties for constraint violations. The
coefficient of each variable is the net return for the
first-stage variables and the penalty for the second-
stage variables.



5.5. Results of the Simulation

In normative financial planning models, the objective
is generally to determine which portfolio changes
should be effected immediately. The multiperiodicity
of financial models compensates for the shifting eco-
nomic scenarios across time. However, the purpose of
the model is to determine the changes to be imple-
mented immediately. Hence the simulation is in-
tended to determine which model produces the best
first-period solution. In reality, decisions may be made
at any point in a period; however, a discrete time
model will aggregate information to consider all de-
cisions to be made at the start of each period—facing
random rates of return. Again, the incremental cash
flows are aggregated so that one-half is available at the
beginning of the current period. In both formulations
the same initial security holdings are given and the
cash flows for the next period are random.

The process starts with an initial portfolio. Both the
ALM and SDT models determine an optimal solution
for the first period. A random cash flow is then gen-
erated. If the amount of funds spent during the first
period exeeds the random cash flow, then an amount
equal to excess spending is divested from the present
portfolio, which consists of 45% of mortgages, 45%
term deposits and 10% treasury bills. If random cash
flows exceed spending during the first period, then the
incremental amount is invested in treasury bills. After
this reconciliation, revenues are the sum of the known
returns of the assets held since the start of the period
and the random returns of the assets bought at the
start of the period. The costs are the sum of the
random cost of demand deposits and the discount for
selling securities prior to maturity. The reconciled
portfolio serves as the new initial portfolio, which is
then used to generate new solutions for both models.
This cycle is repeated 8 times. The process is repeated
50 times, for a total of 400 scenarios. See Kusy for the
simulation flowchart, computer program and details
of the results.

The simulation results for the ALM and SDT for-
mulations are used to test two hypotheses. The first
hypothesis

Hi: pa= péor — phm =0

is used to test whether or not the initial period profit
for ALM is superior to that for SDT. We test this
hypothesis by examining the paired differences of the
profits for the initial run of the 50 cycles for both
models. The specific information used is:

1. the mean of the paired difference ($251.37 in favor
of ALM); and
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2. the standard deviation of the paired differences
($150.43).

The correlation between the ALM and SDT profits
is 0.958. Given the large sample, the significance of
the paired differences is tested using the ¢ statistic

—251.37

— = —11.81.
1.50.43/+/50

The test statistic is significant at the 0.001 level, hence
the null hypothesis is rejected. Thus, ALM yields a
statistically significant better initial solution than
SDT.

The second hypothesis

Hy: ps = pspp — pam = 0

is used to test whether the mean profit for ALM is
superior to that for SDT.

We test this hypothesis by examining the paired
differences of the mean profits of the 8 runs of 50
cycles for both models. The specific information used
is:

1. the mean of the paired differences ($297.26 in favor
of ALM); and

2. the standard deviation of the paired differences
($308.74).

The correlation between the ALM and SDT mean
profits is 0.785. The ¢ statistic is

-297.26 _
308.74+/50

Since this statistic is significant at the 0.001 level,
the null hypothesis is rejected. Thus the ALM for-
mulation yields a statistically significant better solu-
tion than the SDT formulation.

To test the stability of these summary statistics, we
ran a second simulation, using ALM. The results of
this simulation are analyzed similarly: 1) a test of the
initial solution of the 50 cycles, and 2) a test of the
mean profits for the 8 runs of the 50 cycles. The
information necessary to test the first hypothesis is 1)
the mean profits for the first and second ALM runs
($4645.85 and $4672.23, respectively), and 2) the
standard deviations for the 2 runs ($421.11 and
$482.15, respectively). We first test the hypothesis that
both samples have the same mean

6.81.

Hj: parm, = pam,-

The standard deviation used for the test statistic is
the root of the pooled variance. The test statistic is

4672.23 — 4645.85

90.53 = 0.291.
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The test statistic for the final hypothesis is estab-
lished similarly and is

4783.13 — 4720.15

3684 = 0.730.

Since the test statistics for H; and H, are not sig-
nificant at the 0.10 level, there is no evidence that the
mean is not stable.

We used a CDC 6400 at the University of British
Columbia to perform the computations. The total
CPU time to perform the 400 iterations for ALM was
0.240 hours, and for SDP, 6.385 hours. This difference
in computation time explains why only a limited
number of financial instruments, time periods and
realizations were used in the simulations, and high-
lights the gap in tractability between the ALM and
SDT techniques. Details of the codes used to perform
the simulations appear in Kusy.

6. Final Remarks

The existing literature on bank asset and liability
management is based on two approaches: the mean
variance portfolio selection model, and models that
utilize an objective of maximizing expected net re-
turns. Section 1 reviews deterministic and stochastic
models that are based on these constraints. In an
attempt to determine which of these two approaches
is most suitable for asset and liability management
problems, Myers (1968) showed that existence of se-
curity market equilibrium implies that net present
value is the appropriate objective function. The most
comprehensive model of this type is the Bradley-
Crane stochastic decision tree model (1972, 1973,
1976). They attempted to overcome the crucial obsta-
cle to asset and liability management of incorporating
uncertainty while maintining computational tracta-
bility. Their model is a useful one and offers many
important insights. However, it does not really main-
tain computational tractability for realistically sized
bank asset and liability management problems. It also
possesses some undesirable features, notably arbitrary
constraints on capital losses, an absence of portfolio
mix constraints and an immediate revision that must
satisfy all possible forecasted economic constraints.
The ALM model is an attempt to remedy some of
these deficiencies and, as shown in Sections 3 and 4,
is an implementable model of bank asset and liability
management. The results of the application to the
Vancouver City Savings Credit Union indicate that
the ALM model is superior to related deterministic
models, and the simulations in Section 5 indicate that

ALM generates better first-period decisions than does
the Bradley-Crane SDT model. An additional advan-
tage of ALM over SDT is that the results of small
changes in parameter values and previous realizations
can easily be determined by calculating penalties,
while SDT may become infeasible. The CPU time to
solve ALM is 1.5-2 times that of a related determin-
istic model and much less than that required for the
Bradley—Crane model (0.24 hour versus 6.39 hours
for simulation, as shown in Section 5). Hence ALM
is a feasible option for implementation in large banks.
To apply ALM, one must determine essentiaily the
same information as with a deterministic model: 1)
deposit flow estimates, 2) estimates fo the term struc-
ture of interest rates, 3) estimates of withdrawal rates
of deposits under various economic conditions, 4)
legal constraints governing the behavior of the finan-
cial institution, 5) policy constraints, 6) reccommended
reserves for maintaining a liquid position, and 7) the
initial position of the firm plus discrete probability
distributions for random elements and penalty costs.
The model is capable of handling useful policy con-
straints. The major drawback of ALM is that it is not
a true dynamic model. Simulations such as those in
Section 5 provide confidence in the approach taken
in ALM. Birge (1983) delineates bounds on the error
associated with aggregation schemes (such as the one
used in this paper) in the context of general recourse
models. The general problem of the accuracy of
various approximations in multiperiod stochastic pro-
grams is currently being studied by Ziemba in collab-
oration with J. Birge, M. A. H. Dempster, H. Gass-
man, P. Kall and R. Wets. The results of their work
will, we hope, provide general guidance regarding
solution technique trade-offs in dynamic stochastic
modeling. See Birge and Wets (1986) and Kall,
Frauendorfer and Ruszcynski (1984) for surveys of
the current theory in this area.
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