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Sumimary. It is shown that the theory of positive linear independence and the
properties of Jordan-equivalent matrices can be utilized effectively in order to obtain
an algebraic characterization of a face structure of convex polyhedral cones.

1. Introduction

To each subset SCHR™ of cardinality » (# =1} corresponds in a natural way
an m x# matrix 4. We assume that {0} €35, i.e. A does not contain zero columns.
The linear hull and the positive hull of 5§ will be denoted respectively by

lind={{t=4Ax, <R} and posd={|t=4Ax xcNB},

where M7 stands for the nonnegative orthant of ™. In matters perfaining to
the theory of positive linear independence, we follow the terminology and notations
of REAY [6]. In relation to convex cones and polytopes, we follow the terminology
of KLEE [4]. In particular, a k-fase of a convex cone C is a face of dimension 4.
A simpiicial k-face is a k-face which contains exactly £ extveme rays. An (m —1)-
face of an m-cone C is called a facet. Furthermore we denote by 4, and ;4 the ™
column and the s row, respectively, of a matrix 4.

1f 4 and A are Jordan-equivalent, i.e. the rows of 4 and A generate the same
linear subspace?, then C=posA and € = posd have identical face structure, In
particular, if C is pointsd, i.e. of lineality dimension (3] zero, then so is C, and if
pos{d,,, ..., 4;) is a k-face of C, then pos (A, , ..., ;) is a k-face of T. A matrix 4
is in canentcal form if some of its coluruns form an identity submatrix, the basts;
all the other columns are nombasic columns, By of we denote the class of all
matrices in canonical form which are Jordan-equivalent to 4, and all row and
column permutations of such matrices. By 4 we always denote a member of «.
A matrix is lexico-positive (-negative) if all its columns are lexico-positive {-nega-
tive).

A minimal set of generators A; of C=pos{d,, ..., 4,} is called a frame [1].
A frame of a face F of C determines F. A linearly independent subset T of a
k-face F subdeiermines F if CrlinT=F. If, for instance, A={A;, A4, Ag) with
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1 Note that 4 and A need not have the same number of rows. For instance, the
deletion of rows which are identically zero will produce a Jordan-equivalent matrix,
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0 1 0
C=posd,
For C a pointed m-cone, an (m — &}-face G is said to be complementary to a
k-face F if F~G= {0} and the linear hull of ¥ and G has the same dimension as C.

(1) Lemma. If C is a pointed cone, then {i) every extreme ray of € has a
complementary facet, and (ii) every facet of C has a complementary extreme ray.

Proof. (1) Suppose R is an extreme ray of C without a complementary facet.
Then R would be contained in every facet, whence in the lineality space of C.
But this contradicts the fact that € is pointed and therefore of lineality dimension
zero. {il) Suppose F is a facet of C without a complementary extreme ray. Then
every extreme ray of C lies in F, contradicting C 4 F.

Note that this lemma is a special case of a theorem by EGGLESTON, GRUNBAUM
and Kreg [2] which, when adapted to cones, states that every k-face of a pointed
cone has a completnentary {m — k)-face.

1 -
A= ( ) , A= (0) Aa=( 1), then A4,, 4, subdetermine (but do not determine)

2, Convex Cones and Equivalent Matrices

{2) Proposition. C=posd = {0} is a pointed cone if and only if there is a
lexico-positive matrix A in .

Proof. Let A4 be lexico-positive. The lineality dimension of T, and therefore
of €, is different from zero if and only if there exists A; such that —4,¢C [3 and 5].
But 4 is lexico-positive; thus pos(d,,..., A4, ){—4} for j=1,...,n since
every —A4; is lexico-negative. This completes the proof in one direction. If C is
a pointed m-cone (m>0), then at least one of its generators, say 4,, is extreme,
By lemma (1), posA, possesses a complementary facet I, say F=pos{d,, ...,
Ay i tr oors A ) with A, ..., A, subdetermining F. Construct 4’ such that
the colummns A3, ..., 4,, (in that order) constitute the basis. Since lin(Ag, ..., 4,,)
= {x| x;==0} is a supporting hyperplane of C’, all entries in row ;4" must be of
the same sign. Therefore ;4" 0, since a1,= 1. All nonbasic columns with positive
entry in the first row are trivially lexico-positive, while those with zero entry
belong to lin{4,, ..., 4, and thus to F’, which is itself a pointed (m — {)-cone.
We use the same construction to make ag:2 0 for pos4; CF”, viz. let posdy be
an extreme ray of F’, select a complementary face in F’ and a set of (m —2)
columns subdetermining this subfacet of C’; construct A" such that Ay, A5,
and these (m —2) columns constitute a basis. This keeps ,A’ unchanged. The
proof is then easily completed by recursion.

It is possible to strengthen somewhat the *' only it direction of Proposition (2).
In fact, the proof of the proposition yields:

(3) Remark. 1f C=posA {0} is a pointed cone, then there is a lexico-
positive matrix 4 in of such that its basic columns correspond to extreme rays
of C.

(4) Theorem. F is a A-face of & pointed m-cone C=posd (0< k< m) if and
only if there exists in & a matrix 4 of the form

1 ™% 9 oV
e M™MU wp




136 R. ].-B. WETs and CH. WITZGALL:

where I'™ is an identity matrix of order &, U and V are lexico-positive, and those
columns in A4 which correspond to ( IE},) subdetermine F. (The columns of ( 3)

characterize the remaining generators of F.)

Proof. F is contained in some facet F, ;). By Lemma (1) there exists an
extreme ray complementary to K, _,,, say posd,. We obtain 4’ in of by selecting
a basis formed by A,, and {m —1) extreme generators of F,_,,. After an ap-
propriate arrangement of columns and rows, we can write

1 0.0+ +

Ai

1

where 4, corresponds to 4,, and the columns 4, ..., 4,, subdetermine F,_,,.
The arguments proving that ;42 0 are identical to those given in Proposition (2).
If ,A;=0, then Ajclin(dy, ..., 4u) and therefore 4K, . If F'=F,_,, ie.
if A=m —1, the construction terminates. Otherwise there exists a facet B,
of Fj,—y containing the k-face F'. By Jordan equivalence, the cone C’ spanned
by the columns of A’ is pointed since C is pointed. The facet £, _,; is pointed
since it is & subcone of the pointed cone C’. Hence Lemma (1) applies, yielding
the existence of an extreme ray, say posAy, complementary to K, 5 in F, .
By selecting a basis consisting of 47, Ay, and {m —~2) extreme generators of
Fim..xy» We obtain

1 ¢...010...0 {+-- -+
1 0...0|+ -+
AJI____
1
. » »* "
|
where 47, Ay correspond to A3, 43, and the columns Ay, ..., 45, subdetermine

Fj-3- We note that ,4"=,4’, and that ,47>0 if 4;¢F, ;. The columns
whose two first components vanish belong to F,_y. If 2<Cm — 2, the construction
continues until it reaches

1 + ot

1 e ' _(I(m—n 0 0 V)

m—N o
4 o Iwg w

Kl

¢
where V is lexico-positive, the columns corresponding to ( fu)) subdetermine F

and all columns whose {m — %) first components are zero characterize generators
in F,
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e 0
Any change of basis involving only columns in (j‘mf}) wil) not affect the

first (m &) rows of A™* We proceed to use this fact to transform A™—#

0
fo f,'f)
determine a subcone of a pointed cone, which is therefore pointed itself. The
same is true, because of Jordan-equivalence, for the cone spanned in #* by the
columns of (f®T). By Proposition (2}, there exists a lexico-positive matrix (I# )
which — after a possible rearrangement of columns — is Jordan-equivalent
to (™ U). The corresponding basis change yields A, completing the proof in
one direction.

1f there exists 4 in & as above, C=posd is a pointed cone by Propesition (2).

into a lexico-positive 4 with the desired properties. The columns in (0

o 0
Moreover, the columns of ( 7 U) determine a pointed subcone F of T'=pos 4.

F is a k-face of C, and therefore F is a k-face of C, since there exists £> 0 such
that the vector {z, &3, ..., &% 0, ..., 0) is the normal of a supporting hyper-
plane P of C with PnT=F.

In view of Remark (3) and the particular use of Proposition {2) made in the
proof of Theorem (4), it is possible to strengthen somewhat the “ only if*’ direction
of this theorem.

(5) Remark. If F is a k-face of a pointed m-cone C =pos A, then there exists

0
Ain & asin (4) and such that the basic columns in ( Im) correspond to columns
of A which determine extreme rays of F.

(6) Corollary. Let C=posd be a pointed m-cone. Then A, ..., 4, {(A<<m)
determine a simplicial k-face of C if and only if there exists 4 in & as in (4)
where I is an identity matrix of order & which corresponds to the columns
A,. ..., A, V is lexico-positive, and I is a nonnegative matrix.

(7) Corollary. Let C'=pos A be a pointed cone. Then pos 4, (pos(4,, 4,)) is
an extreme ray of C (is a 2-face of () if and only if there exists A as in (6} with
k=1 (k=2).

Proof. Tt suffices to observe that every 1- or 2-face of a pointed cone is 3
simplicial face.

3. Reay Matrices and Positive Bases

(8) Definition. We call an m X s matrix R0 a Reay malrix if it is upper

D »
D,

block triangular, &= , such that each D, is a #, %1 negative matrix

o D,
with #;2¢,,20 for i=1,.,.,s—1 and 3 f,;=m.
(9) Proposition {REAY [6]). If there exists 4 in .o such that A= (I, R} where
R is anm X s Reay matrix with { 5 s 5 m, then the matrix A determines a positive
basis [5] for ®™.
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Proof. Let u;= 3¢, with 1,—0. 1f A determines a positive basis for W™, by
3

{7, Theorem 2}, there exists a decomposition of the columns of 4 into s subsets
AW, ., A% of decreasing cardinality where card 4W=¢# +1, =1, ..., 5, and

x
A=A, i1s .-, Ay Ay, such that *EJIA‘*’:A and pos{dM o ... LAY} is a
linear subspace of ™ of dimension »;. We can choose v, %; and renumber such

that .
dim Jin (Amu uA”_l}u{A,U_u%d, . A"i}) =y

and hence so that
dln’l HD({AI, ceny A“}u{z‘!“’_'_; braia A,'} [ ] {Au{;-u-(-i» PR A‘-’i}) ==y

The proof is completed by renumbering so that for =g the vectors in the above
union become A,, ..., 4,, and by letting (4,, ..., 4,} be the basis of A.

Note that for the “if’" direction, the fact that the size of the matrices D,
decreases is not necessary. From Propositions {1) and {6} we obtain:

(10) Corollary, Let C=posA be an m-cone. Then lin(4,, ..., 4,) is the line-
. . : Ny ™ 0 U W
ality space of € if and only if there exists 4 in & such that 4 = 0 Imb g ¥

where J® js an identity matrix of order & which corresponds to the columns
Ays ..., Ay, U contains a k& xs Reay matrix where {=s=% and V is a lexico-
positive matrix. If A corresponds to a frame for posA, then U7 is a Reay matrix.

Algorithms for finding matrices of the form referred tv by Theorem (4) and
Reay matrices are described in [8].
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