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which is usually only a part of M (whence the appellation “local’”). Moreover, if
M already has another more natural linear connection on it, then the locally
constructed “covariant” differentiation lacks any geometric and physical sig-
nificance possessed by the original connection on M (e.g., if M is a submanifold
of Euclidean space, as indicated above).

In contrast to local existence, the question of global existence of absolute
parallelisms on all of a given M is much more difficult. Comprehensive results are
not available, but some facts are known.

For example, it has been long known that Lie groups, and their quotients by
discrete subgroups, have absolute parallelisms given by group-translation.
Another classical result is that a manifold admitting a linear connection with
zero curvature, e.g, an absolute parallelism, which is in addition symmetric
(i.e., DyV = DyU), must be locally affine (ie., must admit a covering by co-
ordinate systems that are affinely related: y' = aix’ + b%). Theorems of topology
about the existence of nonvanishing vector fields on M also provide some negative
information, since each parallel field e; must be nonvanishing. For example, no
manifold can have an absolute parallelism unless its Euler characteristic is zero;
this rules out all the even-dimensional spheres. Positive results are more difficult,
since a whole independent set of nonvanishing fields ¢, (i = 1, ---, n) must be
constructed. Bott and Milnor have proved [2] that in fact the only spheres ad-
mitting absolute parallelism are the 1-, 3- and 7-dimensional ones.

Recently, J. A. Wolf has undertaken the classification of all those manifolds
that admit an absolute parallelism leaving invariant a possibly indefinite Riemann
metric {4].
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STOCHASTIC PROGRAMS WITH FIXED RECOURSE:
THE EQUIVALENT DETERMINISTIC PROGRAM*

ROGER J.-B. WETSt

Abstract. To each stochastic program corresponds an equivalent deterministic program. The
purpose of this paper is to compile and extend the known properties for the equivalent deterministic
program of a stochastic program with fixed recourse. After a brief discussion of the place of stochastic
programming in the realm of stochastic optimization, the definition of the problem at hand, and the
derivation of the deterministic equivalent problem, the question of feasibility is treated in §4 with
in § 5 a description of algorithmic procedures for finding feasible points and in §6 a characterization
of a special but important class of problems. Section 7 deals with the properties of the objective
function of the deterministic equivalent problem, in particular with continuity, differentiability and

convexity. Finally in § 8, we view the equivalent deterministic program in terms of its stability, dual-
izability and solvability properties.

1. Introduction. In this survey, we shall be particularly concerned with the
properties of the deterministic equivalent program of a stochastic program with
recourse. We shall restrict our attention to the two-stage linear problem with
fixed recourse. These limitations have for principal purpose to simplify sub-
stantially the presentation. However, whenever it seems appropriate we shall
indicate the extent to which certain of these results can be generalized.! On the
other hand, although the title indicates that this paper is essentially a survey, a
fair portion of the results mentioned here have never appeared in print ; most of
these can be considered as sharpened versions of propositions which have appeared
previously or as a different approach to known results, which allows for a some-
what more satisfactory treatment. A few results are genuinely original.

We do not intend to give a historical account of the various developments
in this field ; however, we shall try to sketch the evolution one can observe in the
statement of the problem as well as the various techniques which have been used
to resolve some of the difficulties. The interested but not specialist reader might
consider reading the paper in the following manner: Sections 1, 2, 3, 4, 7, 8, 6
and 5.

Before we give a precise mathematical definition of the problem, it might
be worthwhile to place this class of problems in a somewhat larger context. Con-
sider a decision maker faced with various alternatives. His decisions are subject
to a certain number of constraints, and his goal is to optimize a given criterion.
However, at the time of his selection of one of the alternatives, some of the param-
eters of the problem are unknown to him. The amount of information which is
given about these parameters divides this family of decision making problems
into two main classes to which the economists refer as: decision making under
uncertainty and decision making under risk. In this first class of problems, es-
sentially nothing (or very little) of a quantitative nature is available to the decision
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! Some generalizations are so trivial in nature that they might remain unmentioned.
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maker. In the second class, it is assumed that the decision maker is given a de-
scription of these unknown parameters in terms of a well-determined probability
law. (Various papers have studied models where some partial knowledge of this
probability law is available. In Miyasawa (1968) and Avriel and Williams (1970)
one can find a discussion of information structures for stochastic programming
problems.)

The term stochastic programming will be reserved for those programming
problems which fit in this second class. In the literature one finds various papers
dealing with mathematical programs whose parameters, or some of their param-
eters, are random, but which by our definition may have little to do with stochastic
programming. Some of these papers discuss various problems, the importance of
which ranges from amazing mathematical puzzles up to some important and
sometimes difficult questions whose solution would most definitely enhance our

chances of solving “difficult” stochastic programs. For example, a complete

solution to the distribution problem:
Find the distribution function of Q(A, b, ¢), where

Q(A,b,c) = {min cx|Ax = b, x = 0}

and A, b, c are random matrices,
is neither expected, nor is it necessary for solving a large class of stochastic pro-
grams ; however, it is obvious that any additional insight one might gain in this
question could prove very worthwhile.

Rather than giving an axiomatic definition of a model for stochastic pro-
grams, as can be done for linear programs [Dantzig (1963), Chap. 3], we shall
limit ourselves to some of the characteristics of stochastic optimization problems.
In some sense we shall try to point to those properties which constitute the essence
of stochastic optimization models. First, perhaps, the sequential nature of the
problem, i.e., the decision, is selected before the random elements, say £, of the
problem can be observed. Second, the solution is the selection of one particular
decision, say x in X, where X denotes the set of alternatives. Third, the actual
value z(x, &) of a given decision can only be determined after observing ¢. Fourth,
it is assumed that the decision maker has a definite attitude towards risk described
by some function, say u, which usually has all the properties of the standard
utility function in mathematical economics. In particular, this implies that the
criterion for optimization can always be expressed in terms of the maximization
(or minimization) of the expectation of utility. Finally, it is assumed that the
probability law of ¢ is completely determined once a particular x is selected, i.e.,
we are given the probability space (E,, R,, u,) where Z, is the set of possible
occurrences and u, the associated probability mass.

Thus a very abstract formulation of a stochastic optimization problem could
be:

Given [(E,, ®,, 11,), X, z,u], find inf E{u(z(x, £))} .

We do not intend to develop any further an abstract theory of stochastic
optimization, nor do we intend to make any specific use of the above model. Our
purpose in formulating a fairly abstract stochastic optimization problem is that
it might serve as a point of reference whenever we study any particular model for
stochastic optimization. Many problems studied in mathematical economics,
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operations research, system engineering and control theory,
optimization problems, e.g., Markov programming, inventory problems, stochastic
optimal control problems, . . .. Determining to which category a given, stochastic
optimization problem belongs is irrelevant. In practice, these categories have con-
siderable overlap, e.g., the newsboy problem,? which is probably the first example
of a stochastic programming problem found in the literature, is usually, and
rightfully so, thought of as belonging to that class of problems dealt with,in in-
ventory theory.

The first formulation of stochastic programs with recourse was given by
G. Dantzig [Dantzig (1955)] who called them linear programs under uncertainty,
and by E. Beale [Beale (1955)] who used the name of linear programs with random
coefficients. Beale’s formulation can be viewed as an n-dimensional generalization
of the newsboy problem. Dantzig’s formulation is in some sense somewhat more
general, but still includes many of the particular properties of the n-dimensional
newsboy problem. (See in particular the application [Ferguson and Dantzig
(1956)] which motivated Dantzig’s work.) As already mentioned above the actual
formulation of the problem has not remained static; this was essentially due to
the necessity of widening the range of possible applications as well as to the
desire for a somewhat more rigorous mathematical foundation for the theory.
Although we will not pursue this objective here, this “grown-up” model for
stochastic programming also allows for a more interesting economic analysis.

fit into this class of

2. Statement of the problem. A stochastic program with fixed recourse is
formulated as

(21)  Find inf Z(x) = Eg{c({)x + ryngig [gEITE)x + Wy = p(&)}},

Ax=p

where A, Wand b are fixed matrices of sizem x n,m x Anand m x 1, respectively,
'fmd E, denotes expectation with respect to £. We use here the term fixed recourse
1n contrast to the case when the matrix W is also random. This more general case
has been dealt with in Walkup and Wets (1967b). The random variable &= (),
q(8), p($), T($)) is defined on a probability space (Z, @, ), where E is a Borel
subset of R N=(n+ )m+ 1) +7i—1,Risa o-algebra containing the Borel
subsets of Z, u is a probability measure defined on Z. The coordinates of a point
¢ in E is a collection of four matrices c, g, p and T of dimension 1 x n, 1 x n,
m x 1 and m x n, respectively, i, c, ¢, p and T are projections of ¢ By F we
denote the distribution function associated with u and by £ the support of the
distribution of £, i.e., the smallest closed subset of R” of measure 1.

DerFiNtTioN 2.2, If for all i, j, k the random functions c;(&), q,(&)pi(¢) and
q;(&)ty(&) have first moments, then the random variable ¢ is said to satisfy a
(weak) covariance condition. We shall assume that such a condition is satisfied by
the random elements of problem (2.1).

From a practical viewpoint this condition might seem difficult to verify ;
however, it is easy to see that if £ has variance, then Definition 2.2 is automatically

2 Briefly: Given a distribution of demand, a purchase cost, a seiling price and given that no un-

sold papers can be returned, a newsboy secks the optimal number of papers to order so as to
maximize his expected profit.
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satisfied. Similarly, if either g or p and T are fixed, then it suffices for ¢ to have
first moments to satisfy the weak covariance condition (Def. 2.2). Also if = is
compact, the weak covariance condition is obviously satisfied. Later when we
shall refer to stochastic programs satisfying a weak covariance condition, we
shall always assume that its random elements satisfy Definition 2.2 or some other
condition which is weaker than it, but would be sufficient to make the statement
valid.

Without loss of generality, we can assume that W has full rank, since other-
wise there is a nonsingular linear transformation of the system of equations
T(&)x + Wy = p(&) which would render some of the rows of Wlidentically zero,
in which case the corresponding constraints either generate some deterministic
restrictions on the decision variable x which could have been included in the
constraints Ax = b, or they constitute a genuine system of stochastic equations
whose solution depends nontrivially on £, i.e., no particular vector x can be
found which would satisfy these equations with probability 1. In this last even-
tuality, the problem would be infeasible.

Let Q(x, &) = min {g(&)y|Wy = p(§) — T({)x}. As a function x and ¢, the
problem between brackets might be infeasible or unbounded below, in which
case we shall adopt the standard conventions and define Q(x, £), i.e., the optimal
value of the program, to be + c0 and — 0. Thus the integrand in (2.1) might vary
from + o0 to — oo inclusively. Accordingly, we define the integral E{-} = [ du
as the sum of its positive and negative parts with the positive (negative) part de-
fined as + oo (— o) if the integral is divergent or the integrand is + o0 (— ) on
a set of positive measure. We resolve the ambiguous cases by defining (+ o)
+ (— 1) = + o0. This integral possesses essentially the same basic properties
as the standard Lebesgue-Stieltjes integral (to which it corresponds if it is finite),
except that subadditivity replaces the usual additivity property.

Due to the multistage nature of (2.1), it has been traditional and also con-
venient to write (2.1) as follows :

Find inf Z(x) = E{c(£)x + min q($)y},
subject to Ax = b,

T@x + Wy =p(¢) as.,
X ; 0, y ; 0,

(23)

where it is understood that the stochastic constraints T(£)x + Wy = p(&) must
be satisfied with probability 1 (a.s. denotes almost surely). As we shall see, this
last condition follows immediately from our definition of E{ - }. From a theoretical
viewpoint it is sometimes convenient to amalgamate the fixed constraints Ax = b,
x 2 0 and the stochastic constraints; however, for practical purposes such as
formulation and computational procedures it is clearly advantageous to separate
them. We shall follow this practice here.

Problem (2.3) can be seen to have all the attributes of the class of stochastic
optimization problems described in the Introduction. The sequential nature of
the problem [Dantzig (1955), Introduction] is clearly illustrated: the decision
process involves a choice of a decision x, then & occurs and is observed; finally a
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recourse action y is selected so.as to satisfy the stochastic constraints. Since the
decision y is completely determined by the selection of a given x and the occurrence
of some ¢, the only real decision is the choice of x. The actual value of the decision
is determined as soon as x and ¢ are known, even though determining this value
involves solving a linear program ; the structure of the problem determines this
value uniquely. The attitude toward risk of the decision maker is reflected by the
linearity of the objective, ie., it indicates neither risk aversion nor risk seeking.
Finally, the definition of the problem itself guarantees that one has all the neces-
sary information concerning the random elements of the problem.

3. The deterministic equivalent program. As mentioned in the Introduction,
the purpose of the first part of this survey is to characterize the so-called deter-
ministic equivalent program of problem (2.1). Let

2x, &) = od&)x + Q(x, &);
then

(ERY) Z(x) = Ef2(x, &)} = Efc(&)x + Qlx, &)} = &x + Ox)

where ¢ the expectation of o(¢) is finite, since (2.1) implies that all the components
of £ are integrable. Also, in view of the definition of the function Q(x, &) and of the
integral, the functions Z(x) and @(x) are well-defined for all x in R" as functions
with range in the extended reals, provided Q(x, £) is measurable. This is fairly
easy to prove, see, e.g., Kall (1966), § 1, Satz 1, or Walkup and Wets (1967b),
Lemma (2.3). Note that among other things, it is possible for &(x) and thus Z(x)
to be identically + co or take on only the values + o0 and — co. The problem

Find infZ(x) = éx + O(x),
3.2) Ax = b,
x 20,

is known as the deterministic equivalent program of a stochastic program with
recourse. Later on we shall give a more detailed form of the deterministic equiv-
alent program, but before we do so, we need to probe somewhat deeper into the
particularities of the function ¢&(x). The next section is essentially devoted to the

description of the region of finiteness of &(x). The properties that @(x) possess on
this set receive further elaboration in § 7.

4. Feasibility region. The feasibility region of a mathematical program is
usually defined to be the set of points satisfying the constraints. One can also
define the feasibility region as the set of those points at which the objective is
less than + oo, accepting implicitly the convention that the objective is + oo
outside the set determined by the constraints. In most practical situations these
two definitions are equivalent. That this is also the case for the class of problems
under consideration does not follow—as is usual—from the definition of the
problem. In fact, the notion of feasibility is a very touchy problem, especially
because the more natural definitions of feasibility do not seem to yield any grip
on the computational aspects of the problem, whereas a more constructive type
of definition seems to be a little too restrictive.
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In the first papers dealing with stochastic programming, this problem did
not arise, because the models considered were such that some assumption, stated
explicitly or present implicitly, eliminated this question. Let

= {x|dx = b,x = 0}

be the set determined by the fixed constraints of the problem. If we assume relatively
complete recourse, i.e., for all x in K, there always exists some y = 0 such that
Wy = p(&) — T(¢)x for every ¢ in R" then obviously the feasibility region is
determined by K, alone. One can verlfy that the models considered by Beale
(1955), Dantzig(1955), Dantzig and Madansky (1961), Williams (1963), Williams
(1965), Wets (1966a) and El-Agizy (1967) to name but a few, all implied relatively
complete recourse. This assumption limits somewhat arbitrarily the range of
possible applications, especially with respect to production models; and even
though in most cases its verification might be easy, in general this might not be
the case. During the last five or six years, a certain number of papers, Wets (1966b),
Kall (1966), Dempster (1968) and Parrikh (1967), to again mention only a few,
started with approaching the problem of (i) establishing criteria for determining
when the assumption of relatively complete recourse is satisfied, as well as (ii)
considering a more general model for stochastic programming where this un-
desirable restriction has been removed. In §6 we shall discuss the problem of
verifying the assumption of relatively complete recourse, as well as some related
questions. For the time being, we restrict ourselves to the problem we have defined
(2.1) and characterize as completely as possible its region of feasibility.

As indicated above, we can define the feasibility set as the intersection of the
set determined by the fixed constraints K, and a set K; determined by the induced
constraints generated by the stochastic constraints. We consider the following
three candidates for K, :

(i) K% = {x|with probability 13y = 0 such that Wy = p(¢) — T({)x}
= {x|Q(x, &) = + co with probability zero}.

That these two definitions of K% are equivalent follows immediately from the
+ o and — oo conventions we have adopted for the definition of the function

Qx, &).
(i) K3 = {x|®x) < +©}.

This set is known as the strong feasibility set since it clearly defines the region of
finiteness of @(x) (unless @(x) takes on the value — c0). These two first definitions
of feasibility seem to lead to natural interpretations from a mathematical view-
point as well as from an economic standpoint. The third definition

(iii) K§ = {x|V¢e g 3y = 0 such that Wy = p(§) — T(&)x}

can be viewed as requiring that the stochastic constraints be satisfied for all
points of the random elements which are “‘possible” where possible is defined
as those points lying in the support of the distribution of . As we shall see, this
last definition allows for a more constructive approach to the description of the
feasibility region, but from a purely mathematical viewpoint this *possibility”
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interpretation of the stochastic constraints is not as gratifying as the probabilistic
interpretation associated with the first two definitions.

For problems of this type, it is useful to introduce the following notation. Let
pos W= {tflt = Wy,y 2 0}

be the positive hull spanned by the columns of W, i.e., the closed convex cone with

apex at the origin generated positively by the points of R® corresponding to the
columns of W. Thus, we can write

= {x|p(&) — T({)x € pos W with probability 1}
and
K& = {x|p(&) — T(&)x € pos W for all & in &},

Although the following is not the case in general [Wets (1972bj)], for the
problem at hand, we have the following. '

THEOREM 4.1. For a stochastic program with fixed recourse where ¢ satisfies
a weak covariance condition, such as Definition 2.2, the relation
4.2) Kt =Ky =Kj
holds.

Proof. Since Z is some set of probability 1, it follows that K§ < K%. Thus to
prove the first part of the theorem it suffices to show inclusion in the other
direction.

If x € K4, then pos W contains a set, say A,, of measure 1 with respect to the
measure induced by the random vector 1(&) = p(§) — T(£)x. Since pos W is
closed, the closure of A, is also contained in pos W and a fortiori so is A,, the
support of 1 (£). Since I, is a linear functlon of ¢ (by definition, p(é) and T(¢) are
canonical projections of &) it follows that A and the closure of I () coincide, ie.,
x € K§. Thus K4 = K§.

To show the remaining equality, we first observe that the inclusion K% > K3
holds trivially from the definition of the integral. Since K4 = K4 and = has
measure 1, there remains only to be shown that for every x in K§,

lll

o) = [ 0, Odu < +oo.

Let {W,} be a subcollection of the square nonsingular submatrices of W of
rank 7, such that the {W,} are distinct and such that {pos W,;} constitutes a
covering of pos W. Let ¢(£),;, denote the subvector of g(£) corresponding to the
columns of W determining W;,. For every x in K4 and every £ in &, p(§) — T(¢)x
belongs to some pos W;,, and since W, determines a feasible but not necessarily
optimal basic solution for the recourse problem whose right-hand side is
&) — T(E)x, we have that

4.3) 0x,8) = q(C)mW(B'[P(C) - T(¢)x] = V(.‘)(x: £).
The integral is isotone ; thus (4.3) yields

j Quo@<j v, ) dut,
Eaix)

Eiyx)



316 ROGER J.-B. WETS

where :(,,(x) {€1p(€) — T(¢)x e pos W;}. The right-hand side of this inequality
is finite, since { satisfies the covariance Definition 2.2. Let {Z;,(x)} be a finite
partmon of & where each L (x) is obtained from the finite collection
{_.(,,(x) NE& _.} by a finite number of set theoretic operations (intersections, set
dlﬂ'erences) That such a partition exists follows from the fact that x € K§ implies
that UE,(x) > £ Now, define Vyilx, €) on Z; (x) as follows:

Viplx, &) = max {Valx, DI € Eylx) N Zy(x)}.
Then

a0 = [ otx, au = Zj 0, 9dusY [ vulx, 0 du.
Lix) U) YEu(x)
The last member of this inequality is a finite sum of finite terms, from which it
follows that @(x) is bounded above. Thus K3 > K&, which completes the proof.?
From the definition of problem (2.1), it is easy to see that feasibility depends
only on the p, T components of {. Thus if we let £, ; be the projection of Zonthe
p, T coordinates of R, we have that

K= nng(C) =N Ky,
S €l

(B, T
where

4.4) K;(§) = {xIp(¢) — T({)x € pos W} = {x]Q(x,{) < + co}.

By arguments similar to those used in the first part of the proof of Theorem 4.1,

one can show that K, = nc;; +Ka(0), where 2 p.1 is the support of the marginal
distribution of (p, T).

COROLLARY 4.5. For a stochastic program with fixed recourse where ¢ satisfies
a weak covariance condition, such as Definition 2.2, the relation

K, = K§ = K4 = K3

holds, where

K, = ‘ N K0 = {xlp({) — TC)xepos W for all (p({), TC) in E, ;}.
e:, T
In view of the preceding corollary, we shall write K, whenever we want to
refer to a set of constraints induced on x by the stochastic constraints of problem
(23): T)x + Wy = p(£) a.s. This set K, possesses various interesting properties
which we investigate in the remainder of this section.
THEOREM 4.6. Let I be a set obtained from E,,_T by applying the operations:
topological closure, convex closure, positive closure, positive scalar multiplication

3 The first equality in (4.2) extends to the case where W is also random [Walkup and Wets (1967b)]
provided one requires that the restriction of pos W(¢) to £ is continuous, where pos W({) is viewed as
a map from £ c R¥***® ny0 a metric space (¥, d) whose points are convex cones with apex at the
origin and the metric d is determined by the HausdorfT distance between their intersections with the
unit ball [Walkup and Wets (1967a)). However, when W is random, there scems to be no easily veri-
fiable condition which one could impose on ¢ so as to insure that the second equality in (4.2) also
remains valid. See also Wets (1972b).
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or any of the (not necessarily unique) inverses of these operations; then

K, = NKy0).
el
(The inverse operation of convex closure yields the extreme points.)

Proof. Suppose K; = N K5({); then the fact that pos W is closed justifies
replacing I’ either by its closure or by a dense subset of I’ in the definition of
K,. The remaining assertions of the theorem follow rather directly from the
fact that pos W is a convex cone and the definition of K ,({) given by (4.4).

THEOREM 4.7. The feasibility region K, is a closed convex subset of R*. More-
over, if the closed positive hull of E,,_-,, written pos (?.,,_-,), is a convex polyhedral
cone, then K, is a convex polyhedron.

Proof. Since K; = N K5({), the first part of the theorem follows trivially
from the observation that for each {, K,({) is a closed convex polyhedron. The
second part follows from Theorem 4.6 since in this case we may replace
f’_‘.p < R+ DR by af finite set, namely by any set of points whose positive com-
binations span pos (...,, 7)- This set of pomts can be chosen to be finite by Theorem
4.6, since by assumption, pos (:,,_T) is a polyhedron and thus has only a finite
number of extremal elements. (Note that there are other cases for which K is
polyhedral, e.g., if pos W = R™, then K, = R")

Note that since we are dealing with finite-dimensional real vector spaces,
which are Lindeldf, it follows that K, can always be represented as the inter-
section of at most a countable subcollection of sets K,({). Also in view of Theorem
4.6, the assumption that pos (_.,, 7) is polyhedral is probably the most general
type of assumption which yields an easy proof that X is polyhedral In practice
one mlght expect U that very few cases will occur when pos (... .r) will not be poly-
hedral, since pos (_., r) is polyhedral if the components of p and Tare mdependent
if pand T have a finite discrete distribution, if the convex hull of & Ep1 is polyhedral,

etc. There is, however, one other interesting case in which one is able to prove
that K, is polyhedral.

Before we consider this, we introduce a concept very useful in the theory of
convex polyhedra in general and stochastic programming theory in particular.
We first give a precise meaning to the notion of extremal elements of a convex
cone.

DEFINITION 4.8. Let A be a matrix of row size m. The columns of A4 can be
thought of as points in R*. Then a subset of the columns of 4, say T, constitutes
a frame for the positive hull of A if pos A = pos T and T is minimal, i.e., for every
column T* of T we have that pos (T ~ T*) # pos T.

Simple examples will show that a set of points in R® might contain more
than one frame and that two different frames do not necessarily have the same
cardinality. Naturally, every finite set of points in R™ contains a finite frame.

DEFINITION 4.9. The matrix A* is a polar matrix of A if

(i) pos A = {t|]A*t £ 0}:

(ii) the rows of A* constitute a frame of the polar cone pos*A4 of pos 4, where

pos*A = {tltt < 0 for all t € pos A}.
Similarly, one could define the polar matrix of A as a matrix whose rows deter-
mine a set of minimal supports for the convex polyhedral cone generated by the
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points represented by the columns of 4. In some sense, the polar matrix is a
positive inverse of A. The notion of polar matrix was first introduced by Wets
(1966¢) in connection with the first proof of Theorem 4.10 below. A similar con-
cept, but used in a different context, can also be found in the work of Fulkerson
(1970). He uses the name blocking matrix. The existence of A* is naturally guaran-
teed by the Weyl-Minkowski theorem on polars; see, e.g., Goldman and Tucker
(1956).

In general, the number of rows of A* is not commensurate with the numbers
of columns of A. In particular, A* might have no rows, which corresponds to the
case when pos A has no supports, i.c., when pos A = R™. On the other hand, if
pos A is a cone over a neighborly polytope [Griinbaum (1967), Chap. 7], then
pos A might contain an extremely large number of rows when compared with
the number of columns of 4.4

THEOREM 4.10. Suppose T is fixed in the stochastic program (2.1) and & satisfies
a weak covariance condition; then K, is a closed convex polyhedron.

Proof. Since T is ﬁxed by Corollary 4.5, xe K if and only if (p(¢) — Tx)
€ pos W for all p(§) in E ...,,, where £ is the support of the distribution of p(£). Now
(M(&) — Tx)e pos W if and only if W‘(P(f) Tx) < 0. Thus x € K, if and only if
(W‘T)x = W*p(¢) for all p(é) in &, or, by Theorem 4.6, for all p(¢) in £ where E
is the closed convex hull of & E, Thls possibly mﬁmte system of linear mequalmes
can be replaced by

(4'11) (W‘T)ix g ai‘ = sup W:‘P(c), i= l’ Tty ly
p({)eL

where W¥ denotes the ith row of the matrix W* and ! is the number of rows of
the matrix W*. Unless a¥* < + oo foralli =1,--., I, the problem is infeasible,
in which case K = ¢ and the theorem holds trivially ;. otherwise the system
(4.11) constitutes a finite system of linear constraints which determine the
polyhedron

(4.12) K, = {(x)(W*T)x 2 a*},

where a* is the vector whose components are af.

COROLLARY 4.13. If p(¢) and T(§) are independent and = (or the closure of its
positive hull) is polyhedral, then K, is polyhedral.

Proof Since p(£) and T(¢) are mdependent, E,r = :‘, x &,. For each
T(&) in E,, let Ky(T($)) denote the set of x’s such that [W*T(£)}x = «*. Now
K, = ﬂ;e_ K, = ﬂm)egr K(T(£)). Since E; is polyhedral, by Theorem
4.6 we may replace =; in ﬂm)eh by a finite set representing the extremal
elements of Z;. Thus K, can be written as a finite intersection of polyhedra
K,y (T().

So far we have shown that the region of feasnblllty of a stochastic program
with fixed recourse, i.e., the set K = K, N K, is a set possessing fairly specific
properties. It is always closed and convex, and under fairly general assumptions
it is even polyhedral. When T is fixed, we have also seen that x € K if and only
if x satisfies some deterministic linear constraints (4.12), where a* represents in

* Various efforts have been made to relate the gencralized inverse of a matrix A to-the polar
matrix of 4. So far none of these attempts have been remuncrated by success. One might reasonably
expect that no interesting relation does exist [Wets (1968)].
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some sense a lower bound of the set Z;. Determining such a lower bound—
especially if it is easy to compute—might be very useful in obtaining criteria of
feasibility as well as for constructing algorithmic procedures generating feasible
solutions. In this pursuit it is convenient to introduce some terminology related
to convex cone ordering of real vector spaces. This approach was first presented
in some lectures given at the University of California [Wets (1967)]. In his doctoral
dissertation, Parrikh (1967) shows that these ideas can also be fruitfully exploited
in a slightly different setting.

DEFINITION 4.14. The partial ordering < is said to be a cone ordering in-
duced by a closed convex cone C = R™ if

x <€y isequivalentto y—xeC.
We need the following obvious property of cone orderings.

PROPOSITION 4.15. Let <€ ¢ denpte the cone ordering induced by the closed
convex cone C, and let < ¢, denote the cone ordering induced by the closed convex
cone C,. Then

X<, y<c,z implies x< ¢ ¢, 2,

where C, + C, denotes the vector sum of C, and C,. In particular, if C; > C,,
then l
X<, y<Lc, 2 implies x< z.

DEFINITIONS 4.16. Let T be a subset of R™ and < (. a cone ordering induced
by C. A point a is said to be a greatest lower bound of T with respect to the ordering
induced by the cone C if a « ¢ ac for all points « satisfying a < - { for all { in Z.
Moreover, if ac also belongs to the closure of Z, then a. is said to be a proper
lower bound of L. ’

THEOREM 4.17. Consider a stochastic program with fixed recourse whose
random elements satisfy a weak covariance condition. Let C be a closed convex
cone contained in pos W, A(x) = {p¢&) — T(€)x|p(¢), T(é)eip'r} and a(x) be a
proper lower bound of A(x). Then x € K, if and only if a(x)€ pos W.

Proof. By Theorem 4.6, x€ K, if and only if the closed set A(x) = pos W.
The rest of the proof follows from the last part of Proposition 4.15 since by
assumption, C < pos W.

COROLLARY 4.18. Suppose T is fixed in a stochastic program with fixed re-
course whose random elements satisfy a weak covariance condition. Suppose C is a
closed convex cone contained in pos W and ac is a proper lower bound of ?..,,. Then
x e K, if and only if a(x) = ac — Tx € pos W. In particular, x € K, if and only if
dpuw — ITx € pos W, where a,w is a proper lower bound of E, with respect to
< paaW- v

Provided that a proper lower bound exists, the usefulness of the above
characterization is only limited by our capability of computing it. When T is
fixed, one way to determine this proper lower bound is to compute W*. This
might be by itself a major undertaking which we shall discuss further in the fol-
lowing section. In practice, finding such a lower bound reduces to finding some
cone C contained in pos W such that the proper lower bound, with respect to

_ the ordering induced by C, of any subset in R” is fairly easy to compute. This

will certainly be the case if C can be selected to be an orthant. If a lower bound
of 2 ».7 With respect to some orthant is also a proper lower bound, then by Theorem
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4.17 and its corollary, verifying feasibility of any given x is a fairly easy task. We
shall devote a fair portion of the subsequent developments to the case when
pos W contains some orthant. Moreover, the following proposition helps justify
the relative importance we attach to this case.

PROPOSITION 4.19. Let < ¢ be a cone ordering on R™. Then every bounded
subset of R™ has a unique greatest lower bound if and only if the cone C is the positive
orthant with respect to some coordinate system.

Proof. The “if” condition is obvious. To prove the “only if”” conditions, we
make use of Choquet’s characterizations of simplices in terms of homothetic
intersections. Suppose every bounded subset of R* has a unique greatest lower
bound with respect to < .. It is easy to verify that uniqueness implies that C must
be a pointed cone and that the existence of lower bounds for full-dimensional
subsets of R® implies that C has dimension 7. Let H be some hyperplane sup-
porting C at the origin only, H, the closed half-space bounded by H which
contains C, H, the complement of H, and ¢ in H¢, the unit normal to H. Let s
and ¢ be any two distinct points of H,. Then P,=(s + C) N HY and P,=(t+ C)
N H¢, are homothetic, with s and ¢ greatest lower bounds for P, and P, respec-
tively. Suppose Q = P, N P, # . By the hypotheses, Q has a greatest lower
bound g, and thus (4 + C) N H¢, = P, > Q. Since P, > Q, s is a lower bound for
Q.ands <cq.Thus P, > P, andsimilarly P, > P,,sothat , > Q= P, NP, > P,
ie, P, N P, = P,. Thus any homothets of the closed bounded figure P, intersect
either in a point, a homothet of P, or the empty set. By Choquet’s characterization
[Choquet (1956)]—for a simple proof see Eggleston, Griinbaum and Klee (1964)
—P, must be a simplex. Since C has full dimension, it follows that Cis a simplicial
cone which is linearly isomorphic to the positive orthant of R®.

Theorems 4.7, 4.10 and 4.17 and their corollaries summarize the most useful
characterization of the feasibility region K, which are available at present. Among
other things, they allow us to rewrite the deterministic equivalent program as

Find infZ(x) = ¢x + O(x)
subject to Ax = b,
(W*T(()x 2 W*p({) forall{inE,,,

x 20,

(4.20)

where the function @(x) is finite on the set determined by the constraints unless,
as we shall see, it is identically —co on this set. If the structure of ?..,,,T allows us
to use some of the preceding results, then even more practically oriented ex-
pressions can be found for the deterministic equivalent problem. For example, if
T is fixed, then one can write (4.20) as
Find infZ(x) = éx + 0(x),
Ax = b,

(W*T)x =2 a*,

(4.21)

x =0,
where a* is defined by (4.11).
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S. Finding a feasible solution.® In the first part of this section, we outline
some very general ideas which can be used to find a feasible solution. These useful
concepts are summarized in Algorithm 5.5 and its variants described below. So
much will depend on the particular structure or the particular way the entities
involved are given that in fact it is impossible to find a unique “best” procedure.
The algorithms that we describe should be viewed as possible skeletons rather
than finished products. In the second part of this section we deal with some
specific cases which allow for very effective solution procedures.

Determining whether a point x belongs to K, reduces to checking if it satisfies
a system of linear inequalities. We consider this problem solved and thus limit
ourselves to the case of finding a point of K,. In the preceding section we have
obtained various characterizations of the set K,. In general, i.e., when the support
of the distribution or the matrix W have no special properties, determining if a
given x is in K, is equivalent to determining if

Alx) = {tlt = p(&) — T(&)x, (&), T(Y) e L}

is or is not contained in the convex polyhedral cone pos W, where X is a set ob-
tained from ?..,,_T by any one of the operations mentioned in Theorem 4.6. If T
is a convex set (polyhedron), so is A(x). Thus in general, determining if a given x
is feasible includes the problem of determining when a convex set is contained in
a convex polyhedral cone. Depending on the manner in which the set A(x) is
given, this problem might turn out to be fairly easy or extremely difficult. If the
set A(x) is finite, or more generally if its convex hull has only a finite number
[Klee (1957)] of extreme elements (extreme rays and extreme points) which can be
easily determined, then it is not very difficult to determine if A(x) = pos W, since
this involves at most solving a finite number of linear programs which differ only
in their right-hand sides, namely,

Minimize w=es* + es”

(5.1) Wy + Is* — Is™ = &,),
y20, st20, s 20,

where e is a row vector of size /M whose components are I'sand &%, k = 1, -+, ¢,
are the extremal elements of the convex hull of A(x). Various tricks are available
which allow for considerable simplification, and the work involved is by no
means to be equated with solving ¢ linear programs [Van Slyke and Wets (1969),
§ S and Garstka and Ruthenberg (1973)]. Although, in general, finding the extremal
elements of A(x) might be a real challenge, in some particular cases this might
not prove to be very difficuit: e.g., if the components of T(£) and p(£) are inde-
pendent, then the extremal elements of A(x) can be obtained by paying attention
only to the extremal elements of =, ; which in this case is a rectangle (possibly
unbounded) in R®**1)_|f either A(x) (or its convex hull) is only available in terms
of its bounding hyperplanes or when A(x) is not polyhedral, then one would have
to resort to a technique somewhat similar to the one described below.

* The results derived in the first part of this section were obtained in collaboration with D. Walkup.
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FEASIBILITY CRITERION 5.2. Consider a stochastic program with fixed recourse
whose random elements satisfy a weak covariance condition. A vector x in K, is a
JSeasible solution if and only if the optimal value of each of the | convex programs

Find infw(p, T) = W¥(Tx — p)
subject to  (p, T)e X

is greater than or equal to zero, where W} is the k-th row of W*, the polar matrix
of W, lis the number of rows of W* and X is the closed convex hull of i,,_r.

This feasibility criterion is nothing more than a reformulation of the induced
constraints found in the deterministic equivalent program (4.20). The following
proposition provides a method for “improving” an infeasible solution. In fact,
the proposition shows how one can generate bounding hyperplanes of the set K ;.

PROPOSITION 5.4. Consider a stochastic program with fixed recourse whose
random elements satisfy a weak covariance condition. Suppose X is a set obtained
Sfrom .e.-‘.,,_,- by topological, convex or positive closure and £ is any point in R". If
(p, T) is a point of T such that W¥(T% — p) < O, then either the set {x{(W}T)x
2 Wip} is empty or it is a closed half-space in R" containing K, but not %. If (p, T)
and (p', T') are points in R™"*1) such that for all sufficiently large positive A,
P TY=(,T)+ Mp', T') is a member of L and W¥(T*% — p*) is unbounded
below as A — + oo, then either the set {x|(W}T)x 2 Wip'} is empty or it is a
closed half-space in R” containing K, but not %.

Proof. The first part follows directly from Feasibility Criterion 5.2. For the
second part, if WHT*% — p*) = W¥Tx ~ p) + AWHT'x — p') goes to — oo as 4
goes to + co, then WH(T'® — p’) must be strictly negative. Combining this last
observation with Feasibility Criterion 5.2 completes the proof.

The last proposition suggests the following algorithm for producing a
feasible solution X in K.

ALGORITHM 5.5.

(i) At the start of the ith iteration, a set &' of linear equations and in-
equalities in the variables x are given. (At the start of the first iteration #? is just
the set of linear relations determining K, , viz., Ax = b, x = 0.)

(i) A feasible solution x' satisfying the linear relations & is sought. If
none exists, the stochastic program is declared infeasible, and the algorithm
terminates.

(iii) For each row W} of the polar matrix W* in turn, the convex program
(5.3) is solved with x = x'. If all I programs have nonnegative values, x* is defined
to be x and the algorithm terminates. Otherwise for some k, a point (p, T) or
points (p, T) and (p, T") as in Proposition 5.4 are found. In this case, the appropriate
inequality (W2T)x = W?p or (WET)x 2 W}p' is added to &' to form &'*!
and the (i + 1)st iteration is started from step (i).

If T is a convex polyhedron given by linear equations and linear inequalities,
the programs (5.3) to be solved during step (iii) of the above algorithm are linear
programs. We can thus be more explicit in the description of step (iii):

(iii') ... Otherwise for some k one finds an optimal basic solution (p, T)
yielding negative objective or a basic solution and a direction (p’, T") corre-
sponding to an unbounded feasible pivot from (p, T) ...

In this case we can prove the following proposition.

(53)
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PROPOSITION 5.6. Suppose I used in the definition of K, can be selected to be
a convex polyhedron defined by linear relations. Then Algorithm 5.5 using step
(iii') terminates in a finite number of steps. It either generates a feasible solution
of the program or it establishes that the problem is infeasible.

Proof. 1t suffices to show the finiteness of the process. This follows im-
mediately from the fact that there are only a finite number of rows in W* and
only a finite number of basic solutions and unbounded basic pivots for each
problem (5.3). Thus there are only a finite number of inequalities which can be
added to &'. Moreover, once an inequality has been added, it cannot be generated
again.

Note that in fact, this proposition gives another proof of the polyhedral
property of K, under the hypotheses of the second part of Theorem 4.7. If ¥ is
not polyhedral, there does not seem to be any condition one could impose on the
selection of (p, T) or (p, T") in step (iii) of Algorithm 5.5 which would insure that
the algorithm converges, unless, perhaps, one is satisfied with an epsilon type of
feasibility as in Parrikh (1967).

Not even taking into account the substantial amount of work which the
computation of W* might necessitate, the somewhat laborious fashion by which
Algorithm 5.5 generates a feasible solution is due to the fact that to test the
feasibility of any given x, one has to take into consideration—if not all points of
i,,_,- (or some set derived from it}—at least a sufficiently large number so as to
make the process inefficient. In the previous section, we have seen that a con-
siderable simplification is possible when the sets A(x) have a proper lower bound
a(x) with respect to the ordering induced by some convex cone C contained in
pos W. If this is the case, it is no longer necessary to consider the whole set £, ;
or some large subset of it to verify the feasibility of a given x. As shown by Theorem
4.17, it will be sufficient to solve only one linear program of the form (5.1), namely,

Minimize w=es* + es™,

5.7 Wy + Is* — Is™ = adx),

y20, st 20x s~ =0.

This enormous simplification naturally depends on our c'apability of finding a
convex cone C in pos W such that the proper lower bound of any set will be
fairly easy to compute. In the remainder of this section we shall assume that the
positive orthant pos I (or some other orthant which can always be made to be
the positive orthant by an appropriate change in sign of some of the rows of the
equations T()x + Wy = p(£)) is contained in pos W. Given the practical use we
want to make of this assumption, Proposition 4.19 justifies the restriction to
this case.

If the convex cone C of Theorem 4.17 and its corollary can be selected to be
the positive orthant, then A(x) has a proper lower bound if it contains a point «
such that a; £ 4;,i=1,---, m, for all 6 in A(x) = R®. This ordering induced by
pos I is the componentwise ordering. Thus in this case verifying if A(x) has a

proper lower bound, and if it does, finding it, is usually fairly easy to do. In par-
ticular if T is fixed, then

Alx) = {pQ)IM) e &} — Tx,
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and as shown in Corollary 4.18, it suffices to find a proper lower bound of g‘.,,
(or its closed convex hull) with respect to the componentwise ordering to deter-
mine a lower bound of A(x) for all x. In this case it is determined by &, ; — Tx,
where (¢, ) = p; for all pin E‘.,, (or its convex hull).

FEASIBILITY CRITERION 5.8. Consider a stochastic program with fixed recourse
whose random elements satisfy a weak covariance condition. Suppose that for all x,
the set A(x) possesses a proper lower bound a{x) with respect to the ordering in-
duced by a closed convex cone C contained in pos W. Then % in K, is feasible if
and only if the system of linear relations

(5.9 oW <0, gadf) > 0

is inconsistent, where a is an m-row vector of variables a,. In particular,if C = pos I
and T is fixed, then £ in K| is feasible if and only if the system of linear relations

(5.10) oW <0, olx—TR)>0

is inconsistent, where a is a proper lower bound of E'., with respect to the component-
wise ordering, i.e.,a; < p, for all p in E‘.,.

Proof. This feasibility criterion is an immediate consequence of Theorem
4.17 and its corollary, since if either system above is solvable, then there exists a
hyperplane, determined by its normal o, separating pos W and ad{%£) in the first
case.and pos W and @ — Tx = a,,, (%) in the second case.

For computational purposes, the following proposition supplements the
feasibility criterion given above.

ProPosITION 5.11. Consider a stochastic program with fixed recourse whose
random elements satisfy a weak covariance condition and suppose that pos W
contains the positive orthant pos 1. Suppose further that the rows of T and p are
independent and that each E;, the support of the random variables in row i of T and
P, is bounded. Then a,, (x) exists for all x and is given by

a,(x) = min {(p; — TxX)I(p;, T € g:} s N

where a;(x) is the i-th component of oy, (x). Further, if the columns of T and p
are also independent, then
a(x) = min p; — Y, maxt;x;.
Epi j=1 Sy

Feasibility Criterion 5.8 is a generalization of the feasibility test found in
Wets (1966b), § 2. It is not difficult to see that if £ is infeasible and we find some
o satisfying (5.9) or (5.10), then we are in a very similar situation to that in Algo-
rithm 5.5, in which we found some row W} of the polar matrix of W and a point
{p, T) of £ which could be used to generate a linear constraint which has to be
satisfied by every feasible x but which fails to be satisfied by £. If a() = pc — Tc%,
where (p¢, T;) belongs to E,_T, then if o satisfies (5.9), the hyperplane (6 T¢)x = apc
separates K, from £. When T is fixed the closed half-space containing K, deter-
mined by this hyperplane can be written as

(5.12) (eT)x 2 ga.

The feasibility constraints of type (5.12) bear more than a passing resemblance
to those found in Proposition 3.4.
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In the remaining part of this section we limit ourselves to the case when T is
fixed. The extension of the results below to the case when T also contains random
clements is essentially routine, but requires the introduction of more than a
reasonable amount of cumbersome notation which seems hardly justified at this
stage. The algorithm, in this case, is again a modification of Algorithm 5.5. We
replace step (iii) by

(iii") Solve the linear program

Minimize w = es* + es”,
(5.13) Wy+ Is* — Is™ =a — Tx',
yz0, s720, s~ 20,

where « is a lower bound of £, with respect to the ordering induced by pos I.
Since pos W < pos I, the artificial variables s* can be deleted from the program
(5.13) without impairing its feasibility. However, if we incorporate them in our
formulation, they guarantee a starting basis. If w = 0, then x' is a feasible solution,
and the algorithm terminates. Otherwise, at the optimum there is a set of optimal
multipliers ¢ such that o(a — TX) > 0 and oW < 0 (compare these relations
with those of the second part of Feasibility Criterion 5.8). In this case the
inequality.

(5.19) ' (cT)x 2 oa

is added to & to form & *!, and the (i + 1)st iteration is started from step (i).

PROPOSITION 5.15. Suppose T fixed in a stochastic program with fixed recourse
whose random variables satisfy a weak covariance condition. Moreover, suppose
that o is a proper lower bound of the closed convex hull of E‘.,, with respect to the
ordering induced by pos I, and pos I — pos W. Then, Algorithm 5.5 with step (iii")
terminates in a finite number of steps. It either generates a feasible solution or
recognizes that the stochastic program is infeasible.

Proof. The matrix (W, I, — I) of program (5.13) contains only a finite number
of bases. Thus only a finite number of optimal multipliers of type ¢ can be gener-
ated. Moreover, once a constraint of type (5.14) has beer introduced in the set
&', it can never be generated again.

In order for the minimum of w in (5.13) to be positive, the optimal solution
must involve some of the artificial variables (s*, s~) at some positive level since
otherwise w = 0, which implies that (@ — Tx‘) is in pos W and hence x'is in K,.
Thus in fact, the number of possible ¢’s is much smaller than all possible bases
contained in (W, I, —I). These vectors ¢ are in fact normals to bounding hyper-
planes of pos W which support pos W in a set containing the origin. We have the
following.

PROPOSITION 5.16. Suppose that the basic optimal solution to (5.13) with w > 0
contains exactly one of the artificial variables s™. Then ¢ is the normal of a sup-
porting hyperplane of pos W which intersects (supports) pos W in a facet, i.e., an
(m — 1)-dimensional face of pos W.

Proof. By assumption (see § 2), pos W is of dimension m. The proof is com-
plete if we observe that the optimal basis contains m — 1 linearly independent
points of pos W contained in a hyperplane supporting pos W.
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Thus if Proposition 5.16 applies, we are generating some row of a polar
matrix of W. Moreover, every row of W* can arise in this way. However, it is
not always possible to obtain the normal of a facet of pos W by solving (5.13).
In Van Slyke and Wets (1969), §§ 2.D and 2.E, it is shown that even though this
process will in some sense yield very good constraints on x, in general [Van
Slyke and Wets (1969), Prop. (25) and Cor. (27)] it will generate more than a
minimal set of supporting hyperplanes of pos W. Thus in general, the row matrix
obtained from the normals of these hyperplanes does not constitute a minimal
set as required by the definition of W* (Def. 4.9). :

6. Characterizing relatively complete recourse. As mentioned in the be-
ginning of § 4, the models studied in Dantzig (1955), Madansky (1960), Dantzig
and Madansky (1961), Charnes, Cooper and Thompson (1965) and Kall (1966)
satisfy the relatively complete recourse condition, i.e., for all x in K, and for all
{ in Ep,T there exists y 2 0 such that Wy = p({) — T({)x. Since practical con-
siderations seem to indicate that in various applications this condition will be
very often satisfied and when it is, the work involved in solving the stochastic
program is considerably simplified, it is of paramount importance to be able to
determine whether this condition is satisfied or not. The first efforts in this direction
can be found in Wets (1966b), Kall (1966), Wets (1966c) and Dempster (1968).
The hindsight that these studies have given us shows that this problem has close
ties. [Wets (1966c) and Dempster (1968), § 5] with the theory of positive linear
dependence developed by Davis (1954), McKinney (1962), Bonnice and Klee
(1963) and more recently by Reay (1965a, b) and Hanson and Klee (1969).

The study of various special forms of stochastic programs with recourse
[Walkup and Wets (1970)] suggests that it is convenient to distinguish the fol-
lowing cases. i

DEFINITION 6.1. A stochastic program is said to have

(i) relatively complete recourse if K, > K, ;

(ii) complete recourse if pos W = R™;

(iii) simple recourse if W = (I, —I), up to permutations of rows and columns

if necessary.

Obviously, if W = (I, —I) then pos W = R® and consequently simple re-
course implies complete recourse which in turn implies relatively complete
recourse.® To verify if a given problem has relatively complete recourse involves,
theoretically, computing K, and then verifying if the convex polyhedral set K,
is contained in the convex set K,. Thus, once more we encounter here the prob-
lem of determining if a convex polyhedron is contained in a convex set. As already
mentioned in § 5, this problem might be easy or difficult, all depending on the
manner in which these two sets are defined. We shall not pursue this matter any
further here, at least not at this level of generality. So far, no general method to
solve this particular problem has been investigated. In the literature we know of
only one example of a problem with relatively complete recourse but not com-

¢ This terminology was introduced in Walkup and Wets (1970). (It differs from the one used in
Wets (1966a), where the problem with simple recourse was designated as the complete problem in
recognition of the fact that it is a special case of Definition 6.1(ii). Subsequent development of the
subject has suggested the distinction given here.)
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plete recourse. Such a model was formulated by Tintner (1960) in connection with
the allocation of available resources in agriculture economics. This model was
later given the name of active approach to stochastic programming [Sengupta,
Tintner and Millham (1963)]. In Walkup and Wets (1970), §4, it is shown how
this problem can be approached advantageously by the techniques developed
for stochastic programs with recourse.

Rather than seeking to characterize relatively complete recourse, the re-
search has concentrated on the characterization of complete recourse. In Kall
(1966), § 4, one finds various theorems yielding sufficient conditions for complete
recourse. These theorems correspond essentially to matrix versions of the
Caratheodory and Steinitz theorems [Reay (1965a)] for polyhedral cones. How-
ever, as mentioned in the beginning of this section, this problem can best be
handled in a somewhat more general setting. In Wets (1966¢), and perhaps even
more clearly in Dempster (1968), § 5, one can see that the basic question can be
formulated as: given an m x n matrix A, determine the (facial) structure of the
cone pos A generated positively by the points corresponding to the columns of
A in particular, determine if A contains a subset of columns which constitute a
positive basis for R™,

DEFINITION 6.2. A subset of columns (4!, - - -, AY) = B of the matrix 4 is a
positive basis for R™ if pos B = R™ and the columns of B constitute a frame (see
Def. 4.8), i.e., are positively linearly independent.

In the articles devoted to the theory of linear dependence, various properties
of positive bases have been found. One particularly useful characterization can
be found in Reay (1965a). An algebraic version of his theorem can be found in
Wets and Witzgall (1968), Prop. 9. An algorithm determining if a given cone
pos A does or does not contain a positive basis can be found in Wets and Witzgall
(1967). The two last references deal with more general problems related to the
algebraic characterization of the facial structure of convex polyhedral eones. As
far as we are concerned here, one can find there some indication of the work
involved in obtaining frames, k-faces for pos W and in particular, the polar matrix
of W. The particular problem of determining if a stochastic program has complete
recourse can be settled by finding the lineality space of pos W [Wets and Witzgall
(1967), § 4], where the lineality space denoted by & pos W is the smallest subspace
contained in pos W. In Wets and Witzgall (1967), it can be seen that finding
< pos W amounts to a fairly small amount of computational work. Obviously,
we have the following proposition.

PROPOSITION 6.3. A stochastic program has complete recourse if and only if
the dimension of & pos W is .

In general, if m — dim (% pos W) is small, the effort involved in finding the
lincality space is by no means wasted, since in that case, computing the polar
matrix W* would be very easy. This would allow us to use some of the algorithmic
procedures described in the previous section which involve as prerequisite the
computation of W*,

7. The objective function. The three preceding sections have been essentially
devoted to obtaining various properties of the set K, on which ®(x) < + o0,
which with K, determine the feasibility region of the stochastic program (2.1). In
this section we shall be especially concerned with the properties of Z(x) on K, or
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more particularly, of @(x) on K. In order to derive these properties we shall rely
on some results from the perturbation theory for linear programming. Although
we could use some more elementary facts to obtain certain of the desired results,
Theorem 7.2 below is probably best suited to our purposes, and is also a very
useful conceptual tool in the general area of stochastic programming. It has been
used [Walkup and Wets (1968)] to study the properties of decision rules, so
prominent in literature devoted to stochastic programs with chance-constraints
and to obtain characterization theorems [Wets (1972a) and Gartska (1972)]. In
order to allow us to rely on the intuitive geometric content of this result, we need
the following definition.

DEFINITION 7.1. A finite closed polyhedral complex will be any finite collection
X of closed convex polyhedra, called cells of #, such that

(i) if C is a cell of S, then every closed face of C is a member of ) ;

(ii) if C, and C, are distinct cells of 5, then either they are disjoint, or one

is a face of the other, or their intersection is a common face.

THEOREM 7.2 (Basis decomposition theorem). Let P(t) denote the linear

program

Minimize cx
subjectto Ax =t,
x20,

where c is fixed and A is a fixed m x n matrix of rank m. Then:
(i) P(t) is feasible if and only if t lies in pos A.

(ii) Either P(t) is bounded for all t in pos A or P(t) is unbounded for all t in
pos A.

(iii) If P(t) is bounded, there exists a decomposition of pos A into a finite
closed polyhedral complex X whose cells are simplicial cones with vertex
at the origin, and a one-to-one correspondence between the one-dimensional
cells of # and selected columns of A which generate them, such that
(a) the closed m-dimensional cells of ¥ cover pos A, and
(b) the m columns of A associated with the edges of a closed m-dimensional

cell C of # constitute an optimal basis for all t in C.

This theorem which is proved in Walkup and Wets (1969a) has various im-
portant consequences, e.g., it follows from part (iii) that provided P(t) is bounded,
there exists a piecewise linear continuous function x(t) which determines a basic
optimal solution for ¢ in pos A. The particular consequences of interest here are
given in the following two corollaries.

COROLLARY 7.3. The function Q(t) = {min cx|Ax = t,x 2 0} is a finite convex
polyhedral function on pos A unless Q(t) = — oo for some t in pos A, in which case
Q(2) is identically — oo on pos A.

Proof. The finiteness and unboundedness situations are taken care of by
part (ii) of the above theorem. For the remainder it suffices to observe that Q(t)
will be linear on every simplicial conical cell of the polyhedral complex »# gener-
ated by the decomposition of pos 4 and that the convexity of Q(¢) follows from
the fact that if x° and x! are optimal solutions for ¢ = %, ¢!, then (1 — A)x°® + Ax!
is a feasible but not necessarily optimal solution when ¢ = (1 — A}® + ¢’
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COROLLARY 7.4. The function Q*(t) = {min tx|Ax = b, x > 0} is a finite con-
cave polyhedral function which for every vector t™ in pos (A7, ~AT. D)= {tlt = uAd
—vA+sLuz0, 020 520}" unless Q*t) = + o for some t7 in pos (AT
— AT, 1) in which case Q*(¢) is identically + oo on pos (A7, AT D. '

Proof. This corollary follows trivially from the previous corollary and a
straight_forward application of the standard duality theorem of linear pro-
gramming,

It is now easy to see the next proposition.

PROPOSITION 7.5. The function Q(x,¢) = Qx, (@(&), &), T)) is a convex
polyhedral function in x on K, for each £ in &. Moreover, it is concave polyhedral
in g(£) and convex polyhedral in ()(&), T(£)).

Proof. By definition, Q(x,¢) equals {min g&)y|Wy = M) — T(Ox,y = 0}.
The right-hand sides of the constraints of this problem are linear in x and
(p.(f), T(¢)). Application of Corollary 7.3 yields the assertions of the proposition
with respect to x and (p(£), T(£)). The remainder follows from Corollary 7.4,

Note that the above proposition is not restricted to the domain of finiteness
of Q(x, ¢) but in fact holds for all x in R" and ¢ in = < R", provided one adopts
the standard convention of setting Q(x, &) = + oo if the constraints define an
empty set and Q(x, £) = — oo if the problem is unbounded. This fact would allow
us to prove the first assertion of the theorem below without any restriction what-
soever on the distribution of ¢ ; in fact, the convexity of Z(x) holds even when W
is also a random matrix [Walkup and Wets (1967b), Thm. 4.4].

THEOREM 7.6. Consider a stochastic program with fixed recourse (Def. 2.2)
whose random elements satisfy a weak covariance condition. Then Z(x) = cx + Q(x)
= Ef{d&)x + Q(x,&)} is a convex function on K. Moreover, Z(x) is either finite
on K, or Z(x) is identically — oo on K.

Proof. Since &x is linear in x and K, o K, it is sufficient to prove the above
assertions with Z(x) and K replaced by &(x) and K,, respectively. The convexity
of ((x) follows directly from the isotone and subadditivity of the integral {-du
and Proposition 7.5, which yields the convexity of Q(x, ¢) in x. By Theorem 4.1,
the function @(x) is less than + oo for all x in K, ; thus to complete the proof it
suffices to show that if ®£) = — oo for some £ in K 2; then &(x) = — oo for all
x in K;. Suppose &%) = — oo for some £ in K, ; then the set {10, &) = — o}
must have positive measure. This follows from our definition of the integral and

.the weak covariance condition. By Corollary 7.3, for any ¢ in &, Q(®, )=~
implies Q(x,{) = — oo forallxin K,. Thusforall x in K, the set {£10(x,&) = — 0}
has positive measure, ie., ®x) = — oo for all x in K.

In general @(x), and thus Z(x), are not continuous on K, but under very
general conditions one can prove that (x) is lower semicontinuous on the set
on which it is finite [Walkup and Wets (1969b)]. The lower semicontinuity of
Z(x) is in fact sufficient to imply its continuity if we can show that K, is poly-
hedral (see § 4), since every convex function is upper semicontinuous on a convex
polyhedron {Gale, Klee and Rockafellar (1968)]. Under the conditions we have
imposed on the problem (2.1), we can prove a much stronger continuity condition
which, among other things, allows us to show in the next section that the deter-
ministic equivalent program (3.2) possesses strong regularity properties.

THEOREM 7.7. Consider a stochastic program with fixed recourse whose random
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elements satisfy a weak covariance condition. Suppose Z(x) is bounded on K. Then
Z(x) satisfies a Lipschitz condition, i.e., there is some constant B such that x, x° in
K implies

1Z(x) - Z(x°) < Bllx — x°[,

where |- || denotes the Euclidean norm in R".

Proof. Again, the linearity of ¢x allows us to restrict our attention to &(x).
We must show that if @x) > — o on K; and x, x° € K,, then there exists some
constant B such that [0(x) — A(x°)] £ Bjjx — x°||. Given any x in K, and ¢ in
E, O(x, &) is finite by Theorem 7.6 and can be expressed in terms of a basic solution
of a linear program by writing

(7.8) 0(x,8) = ¢DuW o' (P — TE)x),

where W, is a square nonsingular submatrix of W of rank m and 4{{) is the
corresponding subvector of g(¢) as in Theorem 4.1. Since by Proposition 7.3 the
function Q(x, ) is convex polyhedral in x, the function

_ 10, 8) — 0(x°, &)

flx — x%

Hx,x°:§)

achieves its maximum when x and x° both belong to the region of linearity which
has maximum slope. For x and x° in this region, by (7.8) we have that there exists
some index (i) such that

10(x, &) — 0(x°, &)l = g W' T(E)(x° ~ x)|
< Bplq(&ul - ) TN - Ix® — x|,

where By, is some constant related to the determinant of W,'. By the covariance
condition (Def. 2.2), the right-hand side of the inequality is integrable. Since the
integral is order-preserving, we have that

00 — 0(x%)] < j' 10(x, &) — Q(x°, &) dF(®)

7.9)

< Bylix® ~ x|l '[ Ig)al-WTE)I dF(€) < Blix® — x|,

where B is the maximum over (i) of B(,-,j' g &)l - 1 T(EN dF(&). B is finite since by
Theorem 7.2 there are only a finite number of cells in #, and for each index (i)
the finiteness of the integral is assured by the covariance condition (Def. 2.2).

So far, we have made very little use of the form of the distribution of £ to
derive the properties of the objective of the deterministic equivalent program (3.2),
except naturally for the covariance condition. Below, we obtain two interesting
characterizations of @(x), or equivalently of Z(x), which rely on some further
properties of F(¢). The first one of these theorems, Theorem 7.17, can be obtained
in many ways; for example, one could make use of the representation of the
epigraph of Q(x, £) in terms of its supporting hyperplanes, i.e., use the properties

1
of the polar matrix of ;/ 0 [Wets (1967)], or one could also use some argu-

ments involving the generalized inverse of W. However, in order to unify our
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treatment, we shall rely on Theorem 7.15, which is a mil
lemma in Dantzig and Madansky (1961).
A pair (x,§)€ K, x & is said to be acceptable if Q(x, &) is fini i
16)€ ) ) > nite. |
TheoFem 17, it is pointless to consider any other situation, and thuls1 ‘;‘:rw tl(::
remainder of this section we shall limit ourselves to this '
theory, it follows that the linear program

d generalization of a

case. From duality

Maximize w = a[p(¢) ~ T(¢)x)
subjectto W < ¢(¢),

(7.10)

where 7 is an m-row vector, is feasible and bounded whenever the pair (x, ) is
accgptable. Let D(§) = {n|nW < ¢(&)} be the polyhedron determined by the’ con-
str_amts of (7.10). Its set of vertices will be denoted by ext D(£). Note that ext D)
might be empty, but if it is empty for some &, then it is also empty for all ¢in &
If this is the case and since we only consider acceptable pairs (x, £) and the pro:
grams (7.10) are bounded for (x, Hek, x £, we must then be confronted with
an acute infection of degeneracy.

. For each acceptable pair, let I1(x, £) be the set of optimal solutions to (7.10)

Le., for each n(x, £) in I(x, &), we have that n(x, ) — T(E)x] = O(x, &). The:
set Tl(x, £) is the convex hull of some vertices and extreme rays of D({). By
IT'(x, &) we denote the convex hull of the vertices of D(¢) contained in [1(x, &)

Note that IT*(x, £) is empty only if ext D(¢) is empty. o

PROPOSITION 7.11. For each x in K, there exists a countable family {n(x, &)}
with domain = and range R®, with n(x, £) ®-measurable and such that {n(x, &)} is
dense in I(x, &) for all ¢ in Z. Such a function n(x, &) will be called an R-measurable
selector.

?rooﬁ For each x in K, the graph {(Il(x, &), {)I{e.‘é} of the multivalued
function Il(x, &) is a Borel subset of R® x . This follows immediately from

(i) TI(x, &) can be described by a finite number of algebraic expressions in
P&), T(&) and ¢(&) which are obtained from the optimality and feasibility
requirements for linear programs ;

(ii) £ is a closed subset of R¥; and

(iii) p(£), T(&) and g(¢) are coordinates (projections) of &.

Now, note that for all £ in &, the sets [(x, £) are nonempty and closed. Since #

is the completion of the Borel algebra on R¥, a theorem on measurable selections

EC(astE;?g (1967), Thm. (5.4)] yields the existence of the #-measurable selectors
n(x, &)}.

For the remainder of this section, all we need is the existence of some R-
measurable selector n(x, &) in TI*(x, £). This can be obtained by invoking some
weaker result on measurable selectors [Freedman (1966), Thm. (4)] or by relying on
the fact that in this case each function n(x, {) is the convex combination of a finite
numbef of “‘extreme” functions n(x, ¢) passing through the vertices of polytopes
determined by I1'(x, £). A constructive but rather lengthy proof of the existence of
some J-measurable selector can also be found in Kall (1967), § 1, Satz 1.

PROPOSITION 7.12. Consider an acceptable pair (5 &). Suppose tha
< , ). ¢
and let m(%, §) € T1(X, &). Then the hyperplane PP bey =0

H = {(z, x)|z + (%, §)T(€)x = n(z, E)p(&)}
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is a supporting hyperplane of the epigraph {(z, x)lz Z Q(x, &), x € K,} of the convex
polyhedral function Q(x, £) at the point (}(X, &), X). Moreover, || n(X, £)T(E)| < B(£),
where B({) is the maximum slope of a linear part of the polyhedral function Q(x, £).

Proof. The first part of the proposition follows from the fact that for all x
in K, and £ in E, n(x, &) is a feasible but not necessarily optimal solution of the
corresponding linear program (7.10), and thus

Q(x, &) = nlx, H[P(E) — T)x] 2 n(x, §)[(&) — T({)x].

Hence, for all xin K, and z 2 Q(x, &), i.e., for the points belonging to the epigraph
of Q(x, £), we have that

(7.13) z + n(x, )T E)x = m(x, §p(§)-
That H supports at (Q(X, £), x), follows from the identity
(7.14) 2(x, &) = n(x, §)[p(§) — T(&)x].

The remainder follows from the observation that n(x, £) is a vertex or a convex
combination of vertices of D(£) which correspond to basic solutions of (7.10).
Arguments similar to those invoked to obtain (7.9) yield the desired inequality.

The first part of the following theorem is a slight generalization of Lemma 2
in Dantzig and Madansky (1961). Although it is a trivial consequence of the two
previous propositions, it has proven to be extremely useful as a conceptual guide
when one seeks algorithmic procedures for solving stochastic programs; see,
e.g.; Van Slyke and Wets (1969), § 5.

THEOREM 7.15. Let x belong to K, , and let n(x, £) be an ®-measurable selection
of TI'(%, &). Then the hyperplane {(z, x)|z + E {n(X, {)T(§)}x = E{n(X, {)p({)}} isa
supporting hyperplane of the epigraph {(z, x)iz 2 ®(x), x € K;} of @(x) at the point
(@(%), X). Moreover, E,{|n(%, E)T({)|} S B, where B is the Lipschitz constant of
(x) as in Theorem 7.7.

Proof. The first part of the theorem follows from integrating both sides of
the relations (7.13) and (7.14). The measurability question is taken care of by the
fact that in each case, the expressions involved are continuous functions of
measurable functions and the finiteness of the integrals is assured by our assump-
tions on problem (7.10) and the covariance condition (Def. 2.2). As for the re-
mainder, it follows in a straightforward manner from (7.9) and the definition of
M'(x, &).

COROLLARY 7.16. Suppose the matrix T is fixed. For all X in K,, let n(X)
= E{n(x, )}, where n(X,{) is an R-measurable selection. Then the vector (-1,
—m(%¥)T) is the normal of a supporting hyperplane of the epigraph of M(x) at
(O(X), X). Moreover, |(X)T| < B.

THEOREM 7.17. If & is a finite set, i.e., if F(£) is a finite discrete distribution,
then ((x) is a convex polyhedral function.

Proof. O(x) = E{Q(x, {)} is by Proposition 7.5 a finite convex combination
of polyhedral functions in x.

If the last theorem is combined with the second part of Theorem 4.7, it
follows naturally that when Z is finite, the deterministic equivalent program
(3.2) can be written as the minimization of a convex polyhedral function on a
convex polyhedron or by introducing some additional constraints as a linear
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program. One way to do so, but not necessarily the most efficient one (especially
if the assumption of relatively complete recourse is not satisfied and some of the
components of g and T are random), is to express the problem as a large-scale
linear program along the lines of Dantzig and Madansky (1961), (29), (37), a
variant of which can be found in Wets (1966b), § 3B, Case 1.

If F(J) is an absolutely continuous distribution, then the following propo-
sitions can be found in Kall (1966) and Wets (1966b) respectively.

PROPOSITION 7.18. Consider a stochastic program with complete recourse, such
that q is fixed and F({) is an absolutely continuous distribution. Then @(x) is differ-
entiable on K, = R".

PROPOSITION 7.19. Consider a stochastic program with recourse and only p is
random, Suppose that the distribution of p is absolutely continuous and K, # .
Then @ is differentiable on the (nonempty) interior of K, .

Both proofs rely essentially on the fact that for a given x, I(x, £) is multi-
valued only on sets of measure zero by the absolute continuity of £ Thus in view
of Theorem 7.15, integrating n(x, £)T(¢) on £ where n(x, £) is any #-measurable
selection always determines the same supporting hyperplane of the epigraph of
@(x). From this it is implied that the supports are unique for all x in K,, i.., the
convex function @x) is differentiable (Rockafellar (1969), § 25]. Although both
propositions are correct, their proofs are incomplete since they fail to show that
every normal to a support of {(x) can be obtained as the integral of #-measurable
selectors of I1(x, {). This and some generalizations of the above propositions will
be included in a projected paper.

For stochastic programs with simple recourse, it suffices that the marginal
distribution of the subvector of random variables (p,(¢), T(¢), ¢i(&), i =1, ---, A,
be absolutely continuous [Walkup and Wets (1970), Prop. (2.8)]. If only the
right-hand sides p(¢) are random, it suffices that each marginal distribution of &
be continuous [Wets (1966a), Prop. (21)]. All these constitute sufficient conditions
for differentiability of @x). There does not seem to be any simple condition
which would also be necessary for the differentiability of @(x).

Remark. The reader familiar with the results for subdifferentials (denoted by
) of convex functions can recast the last theorems and propositions in those
terms. In particular, Proposition 7.12 states that for fixed &, —n(x, &)T(£) € dQ(X, £)
for all n(x, ) in TI'(X, &). Also, Theorem 7.15 can be reformulated to read
— E{n(x, &)T({)} € 00X, &) if n(%, £) is an R-measurable selection of M1'(%, £). The
burden of the proofs of Propositions 7.18 and 7.19 is showing that 8¢ = [dQ is a
singleton on a certain set. In fact in these terms, the conclusions of Proposition
7.19 could be completed to read: then 0@ = E{dQ(-, £)}. Moreover 30 is a
singleton on intdom @ = int K, # &, ie., @ is differentiable on int K ,.

8. Some regularity properties of the equivalent program. The study of con-
strained optimization has led to various regularity conditions for optimization
problems which in some sense determine if the problem is “well” formulated
and usually give some indication as to the type of method(s) one could reasonably
expect to generate solution procedures. The standard approach is to study the
effect that small perturbations of some of the constraints will have on the op-
timum. For convex programs these regularity conditions have been traditionally
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—and for good reasons—related to the properties of a so-called dual problem,
although they can very often be verified without necessarily deriving the actual
dual problem [Rockafellar (1967), Van Slyke and Wets (1968), Rockafellar (1968)].
With any given convex program it is always possible to associate different dual
problems. Here, we limit ourselves to the dual generated by perturbing the
constant terms of the constraints.
DerFINITION 8.1. A convex program is
(i) feasible if the set determined by the constraints is nonempty,
(ii) solvable if the value of the infimum is finite and achieved for some value
of the variable,
(iii) dualizable if there is no duality gap, i.., if the optimal value of the convex
program and its dual are equal, .
(iv) stable if there exist (optimal) nontrivial Lagrange multipliers or equiv-
alently for convex programs if the dual problem is solvable.

The terminology used here differs from that used by Rockafellar (1967) and Van-

Slyke and Wets (1968) in only one respect : the dualizable condition corresponds
to what they refer to as normality. Note that if a convex program is stable, it is
also dualizable [Van Slyke and Wets (1968), Prop. (6.8)], and obviously that
solvability implies feasibility.

In §§ 4 and 7 we have established that the deterministic equivalent program
of a stochastic program with fixed recourse whose random elements satisfy a
covariance condition is a convex program of the form

Find inf Z(x) = cx + ®&(x),
Ax = b,
W*T()x = W*p({) V(eZ, 1,

x=20,

8.2)

where Z(x) is a convex function which is either identically — co on the subset K,
of R” determined by the induced constraints or is finite on K,, in which case it
is Lipschitzian with constant B = ||c| + B, where B is the constant for @ as
defined by Theorem 7.7. Here we shall consider perturbations of the fixed con-
straints Ax = b. Following Van Slyke and Wets (1968), § 3, we can thus write
the dual program of (8.2) as

Find supv
83) P

subjectto v < O(x) + (¢ — nd)x + nb forall xe K, N {x|x = 0}.

This program can be interpreted as secking the “highest” supporting hyperplane
of the epigraph € of the variational function ¢(u) = {inf Z(x)lAx =b — u,
xe K, N Ry}.

Characterizing feasibility for the program (8.2) has been the burden of § 5.
In the remainder of this section we investigate some sufficient conditions for the
program (8.2) to satisfy one or more of the properties listed in Definition 8.1.
We shall see that for a broad class of stochastic programs with fixed recourse, the
equivalent convex program possesses the desirable regularity properties.
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THEOREM 8.4. Consider a stochastic program with fixed recourse whose random
elements satisfy a weak covariance condition, and suppose that the constraint set K
is bounded ; then the deterministic equivalent program (8.2) is solvable and dualizable.

Proof. If Z(x) = — oo on K, the theorem follows trivially from the standard
+ co conventions. If Z(x) is finite, it is Lipschitz (Thm. 7.7) and thus continuous,
i.e, attains its minimum on K = K, N K,, which is compact since it is bounded
by assumption and closed since it is the intersection of a closed polyhedron K,
and the closed set K, (Thm. 4.7). Thus (8.2) is solvable. It remains to be shown
that in this case it is also dualizable. This follows in a rather straightforward
fashion from Van Slyke and Wets (1968), Prop. (5.1), and the observation that
the compactness of K and the continuity of Z(x) are sufficient to establish that the
epigraph € of the variational function ¢(y) = {min z(x)|xe K — y} is a closed set.

Easy examples of stochastic programs with recourse can be found which
satisfy all hypotheses of the previous theorem except the boundedness of K,
whose infimum is finite but which are not solvable. In Williams (1965) one can
find a detailed characterization of this situation for stochastic programs with
simple recourse. The dualizability of (8.2) also requires some restrictions. The
following example which has only T random and K unbounded possesses a
deterministic equivalent program which is not dualizable; in fact, in this case
there is an infinite duality gap.

Example 8.5. The deterministic equivalent program of

Find infz(x) = —x, + E,{miny,},
x; —x;=0,
G1X1 — )1 —y2=0,
$2x2 — y2 — y3 =0,
x1, X2 20, ¥1,92,y320

(where &, has a continuous distribution on (1, o) with density f(£,) = £; 2 and
&, = &, — 1) has an optimal value of 0. The optimum value of the dual of the
deterministic equivalent program is — co. It is not known if there exist stochastic
programs (with fixed recourse or not) whose deterministic ‘equivalent programs
exhibit a finite duality gap.

Another sufficient condition for solvability of the equivalent convex program
(8.2) is given by the following theorem.

THeOREM 8.6. Consider a stochastic program with fixed recourse (Def. 2.1)
with T fixed and 2 compact. Then if the stochastic program is bounded, it is solvable.

The proof of this theorem relies on the following lemma, which generalizes
results of Wets (1972), Prop. 4.4, and Gartska (1972).

LeEMMA 8.7. Suppose E is compact and x' is such that x + Ax' e K, for all
A= 0and x in K,. Then there exists a 1 = 0 such that ®x + Ax') is linear in A
foriz 4

Proof. Let us consider the function

Q(x + Ax', &) = min {g&IWy = p(&) — Tx — ATx', y 2 0}

as a function of 4 for fixed £, x and x'. Since x + Ax' € K, for all 4 = 0, it follows
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that Q(x + Ax, &) < +oo for all A 2 0. If Qx + A&)x',¢) = —co for some
A(&) = 0, it follows readily from the lower semicontinuity of Q that Q(x + Ax’, )
= —oo for all 1 2 A(¢). If (M) # 0, where M = {&|Q(x + Ax', &) = — o for
some 4 2 0}, it follows that ®x + Ax') = — oo for all A larger than some iz0,
which proves the lemma. Now consider the case when u(M) = 0, and thus for
every £ € EN\M, Q(x + Ax', &) is finite. Thus by the basis decomposition theorem
(Thm. 7.2), there exists a nonsingular submatrix W, of W such that for all A
larger than some A(£) = 0 depending on £, we have that

Q(x + Ax', &) = Qlx + Adx', &) — (A — MEM(OW ' Tx', .

where ¢'(¢) is the subvector of g whose indices correspond to the indices of the
columns of W contained in W,. (For further details, see Wets (1972a), §4.) The
same argument is naturally valid for each ¢ in E; we can thus associate to each ¢
first an index ! (corresponding to a specific submatrix of W) and a scalar A({)
which is the smallest value of 4 such that p() — Tx — ATx' € pos W, for all
A2 A®). Let 4, = sup {A(&)|¢ has index I}. Now A(£) is continuous in ¢ on a subset
of the compact set E. Thus 4, is finite. Let 1 = max, {4,}, which is finite since

there are only a finite number of square submatrices of W. Thus for 4 2 0, we
have that

Ox + Ix + Ax) = Ox + Ix) — 1),

) Y{Iwithindex 1}

qQOWq'Tx du,

which is obviously linear in A.

Proof of Theorem 8.6. By assumption, the problem is bounded. Thus in view
of the previous lemma, if K is unbounded, &(x) is eventually linear on every
direction of unboundedness of K. By boundedness, ¢(x) is thus increasing or
constant in every direction of unboundedness of K. The lower semicontinuity of
@ now yields the solvability of (8.2).

If = is compact but T is not fixed, then ((x) is not necessarily linear in the
directions of unboundedness of K, as shown by the following example.

Example 8.8. Consider the following stochastic program with simple recourse :

Minimize z = —x + E{y* + y~}
subjectto tx + y* —y~ =p,
xz0, y*20, y~ 20,

where p and t are uniformly distributed on the circle p? + t? < 1. The equivalent
convex program is then: Minimize z = —x + $(1 + x?)'/2, subject to x 2 0,
with optimal solution x = (#)!/2. It is obvious that {(x) is not eventually linear as
X — + o0, although E is compact.

We now consider sufficient conditions for stability. The following lemma
proved in Walkup and Wets (1969c) is particularly useful since it is immediately
applicable to all stochastic programs whose constraints determine a polyhedral
region. Theorems 4.7, 4.10 and Corollary 4.13 have shown that this will be the
case in all but the most sophisticated applications.
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LemMA 8.9. Consider the mathematical program
Minimize f(x)
(8.10) subjectto Ax = b,
x2 0,\

where the objective f is convex and Lipschitz on a polyhedron, and (8.10) is finite ;
then (8.10) is stable.

THEOREM 8.11. Consider a stochastic program with fixed recourse whose
random elements satisfy a weak covariance condition. Suppose that K is polyhedral
and the program is finite. Then the convex program (8.2) is stable.

Proof. 1t suffices to observe that by Theorems 7.6 and 7.7, the hypotheses of
Lemma 8.9 are satisfied for problem (8.2).

To see that the hypotheses of Theorem 8.11 are necessary to obtain stability,
consider again Example 8.5 with the additional fixed constraint x, = 1. This
problem has a finite optimum, in fact, is solvable. However, small perturbations
of the constraints will change the value of the optimum drastically ; more precisely,
the rate of change of ¢ (on its domain of finiteness) is infinite in the neighborhood
of the origin. It is easy to verify that the dual is not solvable.
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