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PROGRAMMING UNDER UNCERTAINTY: THE SOLUTION SET*

ROGER WETSt

Abstract. In a previous paper (8], we described and characterized the equivalent
convex program of a two-stage linear program under uncertainty. We proved that
the solution set of a linear program under uncertainty is convex and derived explicit
expressions for this set for some particular cases. The main result of this paper is to
show that the solution set is not only convez but also polyhedral. It is also shown that
the equivalent convex program of a multi-stage programming under uncertainty
problem is of the form: Minimize a convex function subject to linear constraints.

1. Introduction. The standard form of the problem to be considered in
this paper is:

(1) Minimize 2(z) = ex + E; {min gy} subject to

Az = b,
Tr+Wy=¢ & on (E G F),
z20, y20,

where 4 is a m X n matrix, T is & X n, W is % X 7, and ¢ is a random
vector defined on a probability space (E, §, F).

We will assume that problem (1) is solvable. One interprets it as fol-
lows: The decision-maker must select the activity levels for z, say z = 2,
he then observes the random event ¢ = £, and he is finally allowed to take
a corrective action y, such that y = 0, Wy = £ — T4 and ¢y is minimum. -
This corrective action y can be thought of as a recourse the decision-maker
possesses to “fix-up’’ the discrepancies between his first decision and the
observed value of the random variable. This recourse decision y is taken
when no uncertainties are left in the problem.

All quantities considered here belong to the reals, denoted by R. Vectors
will belong to finite-dimensional spaces ®" and whether they are to be
regarded as row vectors or column vectors will always be clear from the
context in which they appear. No special provision has been made for
transposing vectors. : )

We assume that (X, &, F) is the probability space induced in ®", F
determines a Lebesgue-Stieltjes measure and & is the completion for F of
the Borel algebra in ™. E, the set of all possible outcomes of the random
variables, is assumed convex. If not, we replace it by its convex hull and
fill up § with the appropriate sets of measure zero. We use the notation
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£ to denote a random vector of dimension 7, as well as the specific values
assumed by this random variable, i.e., points of E. No confusion should
arise from this abuse of notation.

The marginal probability space for i=1,---,m wil be denoted by
(E:, %, F:) where E; is a subset of the real line. If they exist, let a;
and B; be respectively the greatest lower bound and least upper bound of

In the first part of this paper, we characterize the solution set of prob-
lem (1); in the second part, we generalize our results to multi-stage prob-
lems.

2. The solution set. A solution of (1) is a decision to be made (here and
now), thus a selection of activity levels for the vector z. The value to be
assigned to the vector y can be determined by solving the deterministic
linear program:

(2) Minimize gy subject to
Wy =t— T:C,
yz0,

i.e., after z is selected and £ is observed.

In this paper, we are only interested in some of the properties of a solu-
tion, i.e., the decision variable z. Nevertheless, the recourse problem (2)
affects our selection of z in two ways. For each selection of a vector z, we
must take into account the expected costs of the recourses such an £ may
generate. But also, we need to limit our selection of a vector z to those
for which there exists a feasible recourse, i.e., problem (2) is feasible. This
latter restriction and the conditions Az = b,z = 0 determine the set of
feasible solutions of problem (1).

DeFINITION. A vector z is a feasible solulion to (1) if it satisfies the first
stage constraints and if problem (2) is feasible for all £ in Z.

k. We do not call such a solution a permanently feasible solution. We re-
jected these terms since they led to certain confusions, see [6] and [8].

2.1. Definition and notation. A set C is convez if 71,2: € C im-
plies that [z, ;] C C. C is a cone with vertex zero if z € C implies that
\z € C for all A'= 0. C is a convex cone if 71, 7, € C implies that
21+ 2, € C.(a)isaray,ie,(a) = {z|z = Aafor A in{0, + =) and a € R".
The rays (a) and (b) are distinct ifb & (a)ora § (b). C* is the polar cone
of C if C* = {y|yz = 0, Vz € C]. The polar cone of a ray (a) isa half-
space that we denote by (a)*. For further reference, see [4].

The theory of positive linear dependence was developed by C’handler
Davis [3]. We review some of the definitions. A set of rays {_(al), (@), -1

PROGRAMMING UNDER UNCERTAINTY 1145

spans positively a cone C if (b) € C implies that b = 3 ji 26" for some
gelection of n» rays a” and some A\; =0, j=1,:--,n A set of
rays {(a), - - -} is positively independent if none of the @' is a positive com-
bination of the others. Otherwise, the set is positively dependent. A set of
vectors {d', @', - - -} determines a frame for the cone C if {(a'), (d"), -+ -}
are positively independent and span positively the cone C.

C is a convex polyhedral cone if it is the sum of a finite number of rays,
C = {(b)| () = 2 imi(a’)}. Equivalently C is a convez polyhedral cone
if it is the intersection of a finite number of half-spaces whose supporting
hyperplanes pass through the origin. A set K is a convez polyhedron if it is
the intersection of a finite number of half-spaces. A bounded convex poly-
hedron P is a polytope. It is easy to verify the following lemmas.

Lzmuma 1 [5]. Let C be a convex polyhedral cone, then C* is also a convex
polyhedral cone.

Lemma 2. If C is a convez polyhedral cone, then every frame of C is finite.

Lemma 3. Every conver polyhedron K can be obtained as the sum of a
polytope P and a convez polyhedral cone C.

2.2. The polar matrix. Let A be a m X n matrix, and let C be the cone
spanned positively by the columns of 4, i.e.,

C={yly = 4z,2z = 0},

then C is a convex polyhedral cone. Moreover, a subset of A determines

a frame for C. The same cone C can also be defined as the intersection of

a finite number of balf-spaces. Moreover, there exists a minimal set of

hyperplanes which support C. This concept led to the following definition.
DerFiNITION. A* is the polar matriz of A if

{yly = Az,z 20} = C = {y | A"y = 0}

and the matrix A* has minimal row cardinality. It is easy to see that
if A has full rank, ie., rank A = m, then the matrix A* has m nonzero
columns. If A* has m rows, then C is a simplicial cone; and if A* has
one row, then C is a balf-space. If C = %™, then no hyperplane supports
C, i.e., the number of rows of A* is zero. An algebraic characterization of
the faces of convex polyhedrals is given in [9].

2.3. Fixed constraints. Let
K, ={z|4dz. =b,z = 0}.

Since K; does not involve any constraints involving later stages condi-
tions, and since the constraints of K, are well-determined, we say that the
set K, is the set representing the fixed constraints.

ProrositioN 1. K, is a convex polyhedron. If m = 0, then K, = R,".
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2.4. Induced constraints. Let
K: = {z|VE€ E, 3y =2 0 suchthat Wy = ¢ — Ta.

We say that K is the set representing the constraints induced on z by the
following condition: No matter what value is assumed by the random
variable £, there exists a feasible recourse y. If we define

Ky = {z|Wy =t — Tz forsome y Z 0},
then
Kg = n K:E-
{3

In [8] it was shown that K, is convex. Without loss of generality, we can
assume that the matrix W has full dimension (7%); otherwise there exists
an equivalent system of linear equations to the system Tz + Wy = ¢
with at least one equation of the form: Tz + 0.y = §;, where 0 is a row
vector of dimension 7. If §; is a constant, we can add that equation to
the system of equations Az = b. If £ is not a constant, then problem (1)
is not solvable and is thus without interest.

In order to be able to appeal to some intuitive geometric concepts, we
define the sets:

L={x|VE€ E 3y =0 suchthat Wy =§—

and
Li= {x|x =t — Wy forsome y 2 0}.
We also get
L=N0L.
tez

Lemma 4. Kg = {2 |Tz = x, x € L} and K, = {z| Tz = x, x € L}.

ProrosiTioN 2. If L; is a conver polyhedron so i8 Ka . Simdarly, if L
18 a convex polyhderon so 18 K, .

Proof. If L; is a convex polyhedron, then by the definition of a convex
polyhedron there exists a matrix, say V, and a vector d such that x € L;
if and only if x € {x | Vx 2 d}. Then, by Lemma 4, Ky = {z | VTz 2 d}.
Similarly for L and K .

Thus, in order to show that Kj is a convex polyhedron, it suffices to
show that L is a convex polyhedron. For each £, L; is the translate by §
of the cone spanned positively by the columns of the matrix —W. Thus,
L is the result of the intersection of “paraliel’” cones, each one being the
translate of the same cone and having for vertex the point .

Let W* be the polar matrix of the matrix W, then —W* is the polar
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matrix of —W. W* is of dimension 7 by I, where I = 0 it L, = ®*,1 = 1
if L is a half-space, and so on.

Lemma 5. L; = {x | W*'x s W*.

Proof. By definition of the polar matrix, we have that {¢t |t = —Wy for
some y = 0} = {t|W* = 0}. Then, by translation of the cone so de-
fined, we obtain the desired result.

ProrostrioN 3. L = {x|W*x £ «, where a* = inf W* for
i=1,---,10.

Proof. The result is immediate if L = R™, i.e., I = 0. Let us assume
that ! = 1. By definition L = Nz L. For ¢ in E all the hyper-
planes W*x = W*, i = 1, ---, I, are parallel. Thus x € L if
W*x < infeez W't = a*. If for each ¢ the linear form Wt attains its
infimum on the convex set E, the set L is well-defined. If for some 7, no
infimum exists, the set of feasible solutions is empty and problem (1) is
not solvable.

We have thus proved that L is a convex polyhedron. L is a cone if and
only if there exists £ in ®™ such that W*; = a*. From Propositions 2
and 3, we derive the following theorem.

TueoreM 1. Ky = {z | W*Tz < o'} is a conver polyhedron.

2.5. The solution set. It now is easy to conclude that Proposition 4 is
true.

ProrosrrioN 4. K, the set of feasible solutions, is a convex polyhedron.

Proof. By Proposition 1 and Theorem 1, K, and K, are convex poly-
hedrons; and since K = K; N K, , the proof is immediate.

3. The equivalent convex program. In (8] it was shown that to each
problem of the form (1), there exists an equivalent deterministic problem,
in terms of the decision variables z, which is a convex program, i.e., the
minimization of a convex function (¢cx 4+ Q(x)) on a convex set K. We
have shown here that this set K is polyhedral and consequently that this
equivalent convex program has the general form:

(3) Minimize cz 4+ Q(z) subject to .
Ax = b,
W*Tz < o,
0,
where Q(z) is defined in [8) and W* and «* are as above.

()%

z

4. Multi-stage linear program under uncertainty. In this last section,
we will show that the equivalent convex program (in terms of the decision
variable z) of a multi-stage linear program under uncertainty is also of
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the form (3), i.e., the minimization of a convex function subject to linear
constraints. We first consider the following generalization of problem (1):

Minimize ¢z + E;{min ¢(y)} subject to -

Az = b,
(4) s
Tz+ Wy=¢ ¢ on (ES,F),
z =0, y € D,

where ¢(y) is a convex functional in y on R*, D is a convex polyhedron,
and 4, T, W and ¢ are as above. In (7], it was shown that problem (4)
possesses also an equivalent convex program, whose objective reads:

Minimize ¢z + Q(z),

where

(5) Q(z) = E{minqly) | Wy = £ — Tz,y 2 0}.

We now show that the solution set of (4) is a convex polyhedron.

Intuitively, we could argue as follows: Since D is a convex polyhedron,
sois W(D) = {t|t = Wy, y € D}, and so is ¢ — W(D) for each &. Since
all polyhedrons £ — W (D) are the translate by # of a given polyhedron,
these polyhedrons are “parallel’”’, and their intersection is a convex poly-
hedron of the same ‘“form’, with the possible exclusion of some faces.
Then by Proposition 2, the set of induced constraints, K, of problem (4)
is also a convex polyhedron. Since K, is the same as for problem (1), we
have that K, the set of feasible solutions, is also polyhedral.

LemMma 6. W (D) s a convex polyhedron.

Proof. By definition of W (D).

In order to point out some of the properties of this set W (D), we give
more detailed construction of the set W(D). By Lemma 3, every convex
polyhedron D can be expressed as the sum of a polytope D, and a convex
polyhedral cone D, . Let

={r|r=Vez= 0
and
D, = {s|Vys 2 f},
ie,y€ Difand only if y = p + q where p € D, and q € D, . Similarly
W(D) = W(D), + W(D).,
and it is easy to see that
W(D), = W(D,;) and W(D). = W(D.).
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Also
t— WD) =t — [W(D,) + W(D,)).

If we construct the polar matrix of (WV.), we can find an explicit ex-
pression for the supporting hyperplanes of W(D,) [9]. Similarly, the ex-
treme points of D, can be found by examining the basis of V,, see [1].
The linear operator W maps the extreme points of D, into the extreme
points of W(D,). From these we can find the bounding hyperplanes of

W(D,). It is thus theoretically possible to find an expression for W (D)
of the form:

(6) WD) = {t|Wt = d)
for some matnx W of dimension m X [ and some vector d. If { = 0, then
W(D) = ™;if 1 = 1, then W(D) is a half-space, and so on.

PROPOSITION 5. L = Negez {x}x = £ — W(D)} 13 a convex polyhedron.
Proof. By (6),

L={x|Wx Sa where a, =d; + infeex Wi, 1 =1, ---, 1.

If the linear form W has no infimum on , then L = ¢.
CorourARY 1. K; = {z | Tx = x, x € L} 18 a cowex polyhedron.
CoROLLARY 2. K, the set of feasible solutions of (4), is a conver poly-
hedron.

We now apply these results to the following multi-stage pxogra.mmmg
under uncertainty problem:

Minimize c'z' 4+ Eg{min &(z%)

@ + Ep[min ¢’(z*) 4 (- 4+ Egn(min ¢™(z™))- - )]}
subject to
Anz' =},
Azlﬂil + Azzﬁvz = 52:
Agr® + Aua Co=F
Apmiz™ ' + Apmz™ = ",
2 202220,2"20,.--,2" 20,
where the t' are independent random vectors for 7 = 2, --- , m and the
c'(z') are convex functions for ¢ = 1, ---, m. This problem is readily

seen to be equivalent to the general structure of the multi-stage problem
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found in [2, Chap. 25]. By Theorem 1, we obtain the equivalent m — 1
stage programming under uncertainty problem:

Minimize ¢'(z)' + E{min &(z’) + E{min ¢*(z*)

consirained programming, Recent Advances in Mathematical Program-
ming, R. Graves and P. Wolfe, eds., McGraw-Hill, New York, 1963, pp.
113-120.

[7] R. VAN SBLYEE aND R. WETs, Programming under uncertainly and stochastic opti-

(8) . 1, m— _ mal control, J. Soc. Indust. Appl. Math. Ser. A: Control, 4 (1966), pp.
+ - 4+ E;(mm c” (=™ l) + Qm-—l(»'l:"| l)) -} 179-193.
subject to i8] R. Wets, Programming under uncertainty: The equivalent convex program, this
1 Journal, 14 (1966) pp. 89-105.
Anz = b, [9] R. WeTs anD C. WitzeaLL, Towards an algebraic characterization of conver poly-
i t D1-82-0525, Boei Scientific Re h
Az + Anl': - fz, iﬁ,rz:a:z:iz’ SB;T:;: (ilggxmen 1 , Boeing Bcientific Researc!
3 s , .
Apx” + Az = E"’
Am—l.m——zxm.—2 + Am—l.m—la:m_l = Em_l)
£20220220---,2"%20, z"'¢cDp"™

where Qn_1(z™") is a convex function defined on the convex polyhedral
D™, Using repeatedly (5) and Corollary 1, we can find the equivalent
convex program to (7), which reads:

Minimize ¢(z') + Q(z') subject to

Az' = b,
€ Dl’
where D' is a convex polyhedron and Q(z') is convex. This completes the
proof of the following proposition.

ProrosiTioN 6. The equivalent convex program of (7) is of the form:
Find an z which minimizes a convex function subject to linear constraints.
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