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STOCHASTIC PROGRAMS WITH RECOURSE
II: ON THE CONTINUITY OF THE OBJECTIVE*

DAVID W. WALKUP anp ROGER J.-B. WETSt

1. Introduction. In an earlier paper [2] we introduced a general class of
stochastic (linear) programs called stochastic programs with recourse; for a com-
plete description of the model the reader is referred to Sections 1 and 2 of {2].
One of the principal results of [2] was that the objective of such a program is convex
when considered as a deterministic function of the first-stage decision variables.
The main result of this paper is that the objective is also lower semicontinuous.
Except for the definition of a stochastic program with recourse and a few ele-
mentary facts which are repeated here, this paper is largely independent of {2].

The proof of the main result relies on the following lemma of general interest
in the theory of convex functions.

LEMMA. Suppose f(x, £) is a function with range in the extended real numbers
which is lower semicontinuous and convex in x on R" and measurable in £ with respect
to a measure u. Then

fx) = f fix, &) du

is a lower semicontinuous convex function provided only that f(x) > — oo for all x.
The definitions of lower semicontinuity, convexity, and integrals for functions
with range in the extended real numbers and the proof of the lemma are given in § 2.

Section 3 contains the proof of the following main result.

THEOREM 1. The objective of the equivalent deterministic program of a stoch-
astic program with recourse is a lower semicontinuous convex function provided it is
greater than — co everywhere.

Finally, in §4 we give an example which illustrates the various concepts
involved and shows that the objective function need not be upper semicontinuous.

2. Proof of the lemma. In the statement of the lemma we used the familiar
concepts of convexity, lower semicontinuity, and integration in the not so familiar
context of functions with range in the extended real numbers. We start therefore
by giving precise meaning to these concepts.

DErINITION 1. Let f be a function with R" for domain and the extended real
numbers R for range. The set

epi f= {(z,x)lze R, xe R", z = f(x)}
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is called the epigraph of f The function fis said to be convex if its epigraph is a
convex subset of R"*! or equivalently if

fxz) = fI(1 = Dxo + Ax,] < (1 — D) f(xo) + Af(xy)

for all 2 in [0, 1] and x,, X, in R", where the conventions 0- 00 = 0 and (+ o0)
+ (—o0) = + oo apply. The function fis said to be lower semicontinuous if for
every converging sequence {x‘} in R"
lim inf f(x) = f(lim x')

or equivalently if epi fis a closed subset of R"* .

In [2] we extended the definition of integration to allow for functions with
infinite values. For convenience we reproduce the definition here. Let (5, %)
be a measure space, where # denotes a g-algebra on E, and let 2 be a (nonnegative)

measure defined on it.
DEFINITION 2. Let i be a measurable function from = into R. The integral

f¢(é) du is defined to be the sum of the following four terms:

4m=f ) da
0ZyY(é)<+x

5] = | WE) dis
— 0 <P(E<0
Cly] = {+OO if p{lY(&) = +w0} >0,
- 0 otherwise,
—oo if p{éy(¢) = —oo} >0,
DIyl =
W {0 otherwise,

where again the convention that (+ o) + (—o0) = + o applies.
In Appendix C of [2] the three following elementary propositions are estab-

lished.
PROPOSITION 1. The integral is order preserving, i.e., if f and g are measurable

functions from R" into R and (&) < g(&) for all £ in R, then ff(é) du < fg(é) du.

PropPoSITION 2. The integral is subadditive ; specifically, if f and g are measur-
able functions from R" into R, then

f LA(E) + g()) dp < f £(E)du + f #(&)

Moreover, equality holds except possibly when the integrals on the right are of

opposite sign and both are infinite.
An immediate consequence of the first two propositions and the definition

of convex function is the next proposition.
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PROPOSITION 3. Suppose f(x, &) is a function from R" x E into R which is

convex in x on R" and measurable in & with respect to ponE. Then f(x) = ff(x, O du
is also convex in x.

The proof of the lower semicontinuity of f(x) in the lemma will employ a
characterization of lower semicontinuous convex functions given in Proposition
5 below. An equivalent result obtained with slightly different emphasis may be
found in [1]. We shall say that a subset C of a linear space is linearly closed if the
intersection of C with every line is closed. Since any point on the relative boundary
of a convex subset C of R" is the endpoint of an open line segment contained in the
relative interior of C, Proposition 4 follows.

PROPOSITION 4. A convex subset C of R" is closed if and only if it is linearly
closed.

PROPOSITION 5, A convex function f with domain R" and range R is lower
semicontinuous if and only if for every line L in R” the restriction of fto LN S is
continuous, where S is the closure of the subset of R" on which fis less than + .

Proof. The proposition follows from Proposition 4, the characterization of
lower semicontinuous functions as functions with closed epigraphs, and the
observation that a convex function with domain R! is lower semicontinuous if and
only if its restriction to the closure of the set where it is less than + o is continuous.

Proof of the lemma. The convexity of f(x) has already been established. In
view of Proposition 5 and the observation that a convex function on R! is always
continuous on the interior of the interval where it is less than -+ oo, it will suffice
to show that the restriction of

o) = hd) = f hJ, &) dy = f £, &) du

to the interval [0, 1] is continuous at 4 = 0, where x; = (1 — A)x, + Ax; and
Xq, X; are points of the relative boundary and relative interior, respectively, of the
convex subset of R” on which f(x) is less than + . Let

Xy = {&h4, &) = +oo forall A £ A° with A% (0, 1]},
I, = {{h(A, &) = +oo forall A = A with A1 € (0, 1]}.

Since, for each &, h(4, £€) < + o0 on a (possibly empty) interval and h(1) < + o
on (0, 1], it follows from the properties of the integral that ¥, and X, are sets of
measure zero. Since f(x, £) is lower semicontinuous in x, we have that for each ¢
in § =2 — (Z,v X,) the function h(4, &) = f(x,, ) is continuous, convex for
0 < 1 = 1 and less than + co except possibly at 1 = 0. Thus,

() h(4, &) = 2(1 — Dk, &) ~ (1 — 2Dh(1, &) + A4, &),

where for each £ in S the function A(4, £) is continuous on [0, 1] and finite, non-
negative and monotonically decreasing on (0, ]. By the monotone convergence
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theorem, A(4) = f A(4,&) duis continuous at 4 = 0. (It is possible that the integral
S

for A(0) diverges, but only if A(4) —» oo as 4 — 0.) Now if f(x) is nowhere equal to
— o0, then both h(3) and h(1) are finite and we may integrate both sides of (1) and
apply Proposition 2 to obtain .

h2) = 2(1 — Dhd) — (1 — 20)k(1) — A(Y).

Since this establishes the continuity of f(x;) at 4 = 0, the proof of the lemma is
complete.

3. Proof of Theorem 1. In view of the linearity of the term ¢x in the objective

z(x) = ¢x + Q(x)

of the equivalent deterministic program [2,(2.7)] of a stochastic program with
recourse, it will suffice to prove the theorem for the function Q(x). In fact, we
establish Theorem ! by proving the following somewhat stronger version.

THEOREM 1'. Either Q(x) is a lower semicontinuous convex function greater
than — oo everywhere, or Q(x) equals — o throughout the relative interior of the
convex set K5 on which it is less than + co.

Proof. By definition Q(x) is the expectation of Q(x, £) with respect to u, where
¢ is the vector of random variables of the stochastic program, u is the probability
measure associated with the variables £, and Q(x, &} is the optimal value of the
second-stage linear program [2,(2.2)] as a function of £ and the vector x of first-
stage decision variables. Proposition 4.3 of [2] shows that for each value of ¢ the
epigraph of Q(x, £) is a convex polyhedron. Hence Q(x, £} is a convex lower semi-
continuous function in x for each £ By Lemma 2.3 of [2], Q(x, &) is measurable
in & with respect to u. Thus by the lemma, Q(x) is a convex lower semicontinuous
function unless Q(x) = — oo for some value of x. But if any convex function takes
on the value — oo, it does so throughout the relative interior of the convex set
on which it is less than + co.

4. O(x) need not be continuous. It is easy enough to construct examples of
convex functions defined on convex subsets of R which are lower semicontinuous
butare not upper semicontinuous on these sets. However, this does not immediately
settle the question whether the convex function Q(x) associated with a stochastic
program with recourse may be discontinuous on the set where it is less than + co.
The following example shows not only that Q(x) may be discontinuous but that
this may happen even if Q(x) > — oo for all x and the coefficients of the recourse
matrix W of the stochastic program are fixed. Of course, as Theorem 4.5 of [2]
shows, in any such example the random variables of the stochastic program must
fail to have finite variances. As a by-product this example shows that the set K5
on which Q(x) is less than + oo need not be closed. For the remainder of this paper
we make free use of the terminology and notation of [2].
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We consider the stochastic program with recourse

inf E{mll’l (yl)] ’
x y

iy =1 —y2=0,
$aXa — Y, —y3=0,
X1> X2, V1,Y2:¥3 2 0,
where = is a countable set of points (¢,(n), £,(n)),n = 1,2, ---, and
Eulm) =227, &y(n) = 272" - 2,
&1(n), &yln)) = 27"

Clearly K, = {x|x = 0}. Let Q'(x,, £) denote the restriction of Q(x, ) to the line
{x]x, = 1}. We have

+ o if x;, <0,
Q'(xy, &(n)) =40 if 0<x, s1-27"
27(x, — 1427 if x,=21-2""
Note that Q'(x, &n)) = 2" if x; = L. Now

Q)= 3 Oy Em)- 27"
n=1

is a finite sum if 0 < x, < 1; but for x; > 1 each term is at least 1 and the sum
diverges. The region P shown striped in Fig. 1 is the epigraph of Q’(x,). Since p is
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0 in the stochastic program, Q(x, ¢) and Q(x) are positively homogeneous in x
and the epigraph of Q(x) is the closed convex cone with vertex 0 generated by P.
The set K5 is the projection of the epigraph of Q(x) into the x-plane; specifically,

$={xlx; > 0,0 < x; < x3} U{xlx, =x, =0}.

Itis easy to see that there are arbitrarily large values of Q(x) in K% in every neighbor-
hood of the point x = (0, 0), specifically, near the boundary {x|x, = x,}. However
0(0,0) = 0; thus Q(x) is not upper semicontinuous at the point x = (0, 0).
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