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WHEN IS A MULTISTAGE STOCHASTIC PROGRAMMING
PROBLEM WELL-DEFINED?*

PALUL OLSEN?Y

Abstract. Certain measure-theoretic issues rawse the possibility that (a) the optimal value-of a
multistage stochastic programming problem may be ill-defined and (b) the recursion defining the
problern may fail. so the prohlem itself is not even detined. The first difficulty is illustrated by example.
A rigorous definition of multistage stochastic programming with fixed linear recourse 1s shown to avoid
this ditficulty. fn the context of the new definiion. certain measurability. convexity. and lower-
semicontinty assumptions on the objective funetion preclude the second possibility.

1. A reformulation of the problem. Multistage stochastic programming with
recourse corresponds 10 a situation in which information is revealed tn stages and
a decision 1s made at each stage based on the information revealed up to and
including that stage and on the decisions already made. Number the stages
0. K (K<+xb Assume that the information revealed at stage k
(0= k = Kjis fully represented by the realization of a random vector X, with
vaiues in R'*. where X,,.- - -, X are defined on the same sample space and have
known juini distribution: assumc that the decision at stage k is represented by a
vector u, & R"™.

-

N
Let &,

=Y, ..8. let §=5, and let X, denote the random vector
(Xo. . X). Let Fy, denote the distribution function of X,. For each
1=k =K. there is a regular conditional distribution function (r.c.d.f.) for
X, givin X, (—i.c..atunction Fy,, ,: R™xR™ '>[0. 1] such that:
{ai foreach x, e R> ' Fg ., " |xy o yis @ proper distribution function on
L“A.

(b for each v, € R,

Faave (o 0= PIX 20X = xcd

for almost every (a.e.) x, .
For convenience. also require that F. .y, (x|} be Borel measurable tor each x,.
The existence of such a function foilows from the fact that the values of X, licina
complete separable metric space-—R™* [ 1. pp. 263-60].

ForO0si=Kand0=] = k. ici 4, be areal m, x n, matrix {recall that n, 1s the
dumensionality of the stage j d:aision vector. u,). Require that A, = 0if j > Let
Ny o let N=Neoand et o, = G-ty ).

For =2k = Kl let

by R > R™. ot RMHR™ o [—20, 0]

The stochastic programming  problem is  defined recursively. Lf;[
Pr.ilugx)=0. Now let 1=k=K and suppose that pi.: R™ x R™
—[-a. +ac] has been defined. Let.

ndi s ) = ot YO P (U ) e X,
* Received hy the editors July 2. 1974 and 1n revised form March 6. 1975,
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where
k
[o. S A = by (x,). 4, Z0.,
dlu o x)=- 1=0
' +x otherwise.

The convention +X+(—00)={—a0)+(+00)=+0 applies throughout.
Define the parameterized problem

Py 2 x, ) minimize rg (i, v X ).

re R
Let p(u o xd=inf (P (u, ; x,)), the problem’s optimal value. Let
(i Plu I;EAfI)EJ'pk(L"k—I:Ek.dF\d/Kk x(XkLXk-I)-‘

That completes the induction step. So that the integral is defined whenever the
integrand 1s measurable. define (as in [9])

[fan=[rau-[r au
for any measure g and measurable. extended-real-valued function f, with the
convention +:% —(+00) = —00+(+00) = +00.
For stage 0 define

Pylxy): minimize co(uy: xo) + Pilug: x0)
subject to AggUg = byl xo).
u,=0.

The preceding formulation of multistage stochastic programming with (fixed
linear) recourse resembles that of Dantzig[3], who introduced the problem in{2].
Wets [10] presents results for a special case of the problem in which X, is
independentof X, foreach 1 =k = K, but he also formulates the problem in the
ibsence of stagewise independence. The Dantzig and Wets formulations differ
[rom the one given here essentially in replacing the definition (1) above with

(1" ﬁk(Ek—llEk—l)EE[Pk(Ek—IZEk”Xk =]

Section 2 shows that p, (u,_,; . .,) is indeed a version of the above conditional
expectation, but Example 2.3 reveals that using (1) instead of (1)—i.e., defining
Py Xio)) to be any version of E[p(uc.: X)X« ]—can result in
E[Py(Xq)] (the optimal value of the stochastic programming problem) being

ill-defined. According to Theorem 2.1, this cannot happen with the formulation
presented here.

A separate issue is whether the function p,(u, ;- ) has the measurability
property that permits the integration in equation (1). (The same property must
" A more precise way of writing the integral is

Pt Xioy. y) dF ey x, Avixeoy)

The abbreviated notation will be used often.
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hold or the conditional expectation in (1) is undefined.) Section 3 presents
conditions under which the integrand in (1) has the requisite measurability
property at each stage: it relies upon Theorem 2.2 (below) and Rockafellar’s
theory of normal convex integrands [6].

2. Uniqueness of the problem’s optimal value. For now. measurability is
assumed while attention focuses on the issue of whether P, is well-defined. Since
the r.c.d.f. in (1) 1s not necessarily unique (there may be more than one function
having properties (a) and (b) above). the definition of p, in terms of an integral
over “the” r.c.d.f. for X, given X, , seems to raise the possibility that p, can be
essentially altered simply by using a different r.c.d.f. at each stage. In fact, that is
not the case.

Suppose thatfor L =k =K F\,y, ,and Gy, y, ., are bothregular conditional
distribution functions for X, given X, .. Using Fy, s, , at stage k for each k
generates a sequence of problems Pi.- - -, P}, via the recursion

Pulzixe )= pulzix) dFin, (xx )

The tunctions Gy, x, ,. | £k =K. generate a parallel sequence P{.- - . P;. (The
data b, and ¢, are the same for P, and P/)
THEOREM 2.1. For each 1=k =K. pi(-:x,)=p - x,) for almost every
gkj Thus Py, is essentially the same as P,
Proof. Let 1 =k = K. Assume that
Prentix)=p 0 x) forae x,.
Then

pul-ix ) =pit:x) VxeT.
where P{X, € T} = 1. By the product measure theorem [1. p. 97].

xr(xe 1 x ) dGyx, (X xi-)=1 Vx €.

where P{X, _, 6'.(/’} =1.

Property (b) of the r.c.d.f. implies that for each fixed x,,

Foaxo x])= G Jx] -1 ae.
Since R™ is separable and distribution functions are right-continuous, there is a
set & of measure | such thatif x, €%,
F.\'u.gk .(xkih = G\ugk |(Xl\i£kfl) Vx,.

If x, ;e ¥N¥F",
[ plzix) dF o J(xdx 0= [ pilzix) dGyx, (xilx_ )

= J Pz x ) dGn, (X |x0 1)

for every z € R™-'. That completes the induction step. The induction hypothesis
is trivially true if k = K. 0

If R"=Randg: R"~>R.[=gmeans [(x) = g(x)Vxe R".
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THeEOREM 2.2, Let g: R"x R™ ->[—00, +o0] be Borel measurable. et
Fxx. . be any regular conditional distribution function for X, given X, | such that
Fxux. (x| +) is Borel measurable for each fixed x,. Let

htu x, )= ‘ gl xg ¥ dFxgxg (vlxg

or everv u€ R" and every x, _,. Then h is Borel measurable, and
Y X

) "h(u,{k,ﬂdFAL .(Ek l)ng(ulk)dF}k(g\A)

foreach ue R". If. for a given u,

J g (u.x ) dFy, (x,)< +OOorJ g (u, x)dFy, (x,)< +00,
then (2) holds as an equality. and

h(u- Xy |): E[g(“ Ek)]l(kfl :fk—l]
fora.e x, |.

The theorem extends Fubini's theorem [ 1, p. 101] to agree with the exterded
definition of integration given after equation (1). A proof appears in [4].

The first part of the theorem is used below to demonstrate measurability of j,
{whose role is played by h in the theorem) while the second part justifies the usual
economic interpretation of the stochastic programming problem. The second part
implies thatif Ep. ., (i, : X, .,) < +00—for which the Appendix’s Proposition A1
gives a verifiable sufficient condition—then E[p, , (1, : X, )| X, = x| exists and
equals p..,(u: x,) for almost every x,. Thus. p, . (u: x,) is the expected
(minimum) cost of operations in stages k + 1 through K given past decisions
g~ - -y and states of nature x,,- - -, x,. The problem Py (1, _,: x,) involves
trying to choose 1, to minimize the sum of current costs, ¢, {1 ; x, ), and expected
future costs. p, ., (u, - x, ). To be precise, at stage k the decision-maker observes
X, . knowing x, and his past decisions. u, .,, he seeks a stage k decision «, that
minimizes current costs plus expected future costs subject to the constraints

K1
A,\,\,uk :bk(jk)‘ E A’\lul
)

1=t

1, 20.

Theorem 2.2 implies pi(u, _1: Xi-1) is a version of E[p.(u, ,: X)X, ] It
does not follow that one could simply take p; (u;_,; - ) to be any version of the
conditional expectation and still conclude (as in Theorem 2.1) that P, is well-
defined. The example below illustrates how choosing a different version of the
conditional expectation could make P, essentially different.

Example 2.3. Let K=2, let X,=0 almost surely, and let X, and X, be
uniformly distributed on [0, 1]. Let

(‘2(1‘43153)50, CI(L"I:!I)E xiuy, coluy; 0)=0.
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Let the constraints be

IA

1,
|
1,

Uy

1A

U,

A

253
Uy, Uy, U =0,
Clearly, p. ts everywhere 0 or +00. Redefine it for each u, on aset of measure 0:
0. W =0, x, #u,.
priwix) =9 =l wz00x, =u,
+a0, otherwise.

Forany fixed w,. pyu,: x)) = ps(uy; x,) for ace. x,.50 potuy; X)) and pilug; X,) are
two different versions of E[p-(u,: X-)|X,]. Notice. however, that there is no
regular conditional distribution function Fy,y, such that

prlugx)= J palur x) dF ., (s

X))
for every u, and x,.

Use of p. in place of p- in the stage | objective function results in the
sequence of problems

P'{uy: x;): minimize x,u, — Xiafuy)
subjectto u, =1
g u, =0
P.(x,): minimize -3
subjectio0=u,= 1.

Thus inf (P,(0)) = —3<20 = inf (Po(0)).

Although piu,: - ) was created by redefining p(u,: - ) on a set of measure 0
foreach fixed u,. the set of every x, such that p5(u,: x,) # p-(u,; x,) for some u, has
positive measure; that is the source of the discrepancy. In general, Pl 5 X0)
depends (at least potentially) on the whole of the function j,, (- ; x, ). Altering
Pr+1l 1 x) on a set of measure 0 alters p, (- ; x,) on a set of measure 0 and
therefore leaves p, essentially unchanged. Altering the function on a set of
posilive measure can essentially alter P, and destroy the original problem:.

3. Measurability of each stage’s objective function. Let (- |x, _,) denote
the Lebesgue-Stieltjes measure determined by Fxux. (" 1xc .. The recursive
defimtion of the stochastic programming problem tacitly assumes that at each
stage, for a.e. xi . p i _yi X, \.* ) is T-measurable for every u, ,.where 7 is
the completion of the Borel setsin R** with respect to g, ( - [x, ,); if that is not the
case. the function p,( - ; x, .,) is undefined on a set of x,_,’s of positive measure,
and the recursion cannot continue.

DerinviTION 3 1. pi., is said to be essentially defined. Let ! =k =K. One
says that p, is essentially defined if and only if: (i) p, ., is essentially defined; and
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(i fora.e. x, ... pe(ly_ 2 Xy . - ) 1s measurable with respect to the completion of
the g-algebra of Borel sets in R™ under the measure u, (- |y, 1 for each u, _,

ProposiTiON 3.2, Let 1 £k =K. Assume:

(@) Py, is essentially defined. and there is a Borel mecsurable funcuion py ||

suchthat p (- x ) =po. (. x ) forae x,.

{b) f)(,:H( LX) Is convex for a.e. x,.

(¢} ¢y and b, are Borel measurable.

(d) ¢, (- 1x0) s convex for a.e. x,.

(e) there is a countable collection V' of Borel measurable functions v . R™

s, . .
X R > R"™ such that for a.e. x.. Viug  x0domrgtn, oo0x) s
dense in dom r (w, .- o x.) for everv u, . where

Vi, .ox 0= (o, . x)iee Vi

Then py is esseniially defined. and there is &« Borel measurable function ), such thar:
(1) 15;:( X )= P i xy) for acel x o and (i) Pl Xy ) is convex for a.e.
X -1

Proof. Let S be a Borel set of measure 1 such that x, € S imphes:

(1) ¢ (- x.)and ﬁ‘[*,( 1 Xxg) are convex:
() Ve o x)idomr(u, (-0 x) 18 dense in domr iy, .
every i, .,

(1) Pt X0 =Pl X
Redefine p),,(-:x,) outside S to be identically +20. let P! be the
(parameterized) problem formed from P, by using p. ., in place of j, .,. Denote
its return function by r} and its perturbation function by p}. By [1. 1.5.6]. r} is
Borel measurable.”

The first step in the proaoi is to show that

cuxg ) for

(3 pulz:x ) =inf{riz. elz, x0) x, ) v e Vi

Let ze R™M ' x, e R™
If pli(z; x,) = +00. (= u, ; X, ) = +00 for every u, € R™. and (3) holds trivially.
Alternatively, suppose py(z: x,) < +00.
Choose a sequence {u;} such that

rz, Ul x, )<+ foreveryn
and
Mz G ) N pelz: X
Choose {e,}< R such that ri(z, ui: x,) < a, for every n and a, \pi(z; x.).
For any given n, suppose that u; lies in the relative interior of
dom ri(z - x ) 2wy 1 rilz, uy; x, )< +00}.” Then by [7. Thm. 10.1] and property
(i1), there is a function ve V such that

r(z olz, x0 x) < a, +(1/n).

Y C1. the definition of ““normal convex integrand™ in [6].

* Note that Ash does not use the term “*Borel measurable in the same sense as this paper, where it
means “measurable with respect to the o-algebra of Borel sets.”” Also. the theorem in [1] must be
extended shghtly since r, (4, : x, ) may involve a sum of the form +00+(—00)_ which Ash does not define.

% See [7] for the definitions of ““relative interior” and “refative boundary ™
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Alternatively, if u} lies in the relative boundary of dom ri(z. " : x,). Corollary
7.3.1 of {7] reveals the existence of a point w in the relative interior of
dom_r‘,\'(:. “ X, } such that ri(z. w: x,) < a,. and the preceding argument can be
applied to w.

Thus. 1n any case, there is a sequence {v"}< V such that

Rz ez 50 00 > pilz X

That demonstrates (3).

Since ry and v are Borel measurable. r{(z, v(z. x,); x,) is a Borel measurable

functionof {z. x,.) foreach v € V. As the infimum of a countable collection of Borel
measurable functions. p, is Borel measurable. Then by Theorem 2.2,

U l)%J P(J:(Ek—ulfk)dF.mgk,.(Xk|£k7l)

is defined for each u, _, and x, _,, and p, is Borel measurable. By Proposition A2
(Appendix). p, ( - x,_,) is convex for every x,_,. Since p,( - ; x,) = pi(- ;X ) for
a.e. x,, Theorem 2.2 reveals that for a.e. x, ;. there is a Borel set B in R* such
that w, (Blx, )=1land p.(-:x, . y)=p/(-:x,,.y)if ye B. Consequently, p,
1s essentially defined. 0

The preceding proposition’s assumption (e) is appealing but not directly
verifiable. The next proposition gives a sufficient condition for it. The hypothesis
of Proposition 3.3 is the conclusion of Theorems 5.5, 5.9, and 5.12 of [5].
Consequently, one can merge the hypothesis of any of those theorems with
assumptions {(¢) and (d) of Proposition 3.2 and prove inductively that p, is
essentially defined.

ProOPOSITION 3.3, Ler | =k = K. Suppose there are matrices D, and D, and a
Borel measurable function d: R** - R" such that

dom (- x)={w: Dy + D Z2d(x,), u, 20}

for a.e. x,. Then assumption (¢) of Proposition 3.2 holds.”
Proof. Let W ={ D, 1—I]. There are square matrices M,. - - - . M, such that,
for any given u € R™, w is an extreme point of {w : Ww = a, w 20} if and only if

w=0 and w=Mu for some i. Let a,.---,a, be the extreme directions of
{w: Ww=0,wz0}. Now redefine M,.- -, M,, by deleting all but the first n,
rows of each matrix. and redefine a,, - -.a, by deleting all but the first n,

components of each vector. For any z € R™ ' and any x,.
domrn(z. ix)={v:y= Y AM(dix)—-D,2)+ ¥ va,.
=1 Py
A=A =0V y, 20V y=0).
=1
Let V be ihe collection of functions ¢ such that
(2. x)= Y AM(dx)-D2)+ ¥ Aa.
=1 =1

m

where Y., 4, = 1. A, Z0Vi, y; Z0Vi, and A, and v, are rational numbers. 0

“ Actually. the hinear mappings D, and D, could be replaced by a Borel measurable mapping and
a continuuus mapping, respectively. See the proof of Proposition 4.6 in [4].
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THEOREM 3.4 Assume for each 1 =k =K:

(a) ¢, and b, are Borel measurable:

(b) ¢t - x.) isls.c. and convex for a.e. x;:

(c) There are functions B, and a, in L\(R*) withvaluesin | 20 0} such that

il X )= Bk (fk )”_lfk 2t a(xy)

for every u, and every x,. and
EIBu(Xb(X)j <+ if1=isk!

(d) {w: Agw =0.w =0} ={0}.

Then p, is esseniially defined, and for each | =k =K. there is a Borel
measurable funcion P such that p( - X \) =P xc.,) for ae x., and
P x, ) is Ls.c. and convex for a.e. x; _y.

The theorem's proof uses the following lemma, which extends {6, Thm. 5].

LEMMA 3.5. Let f: R"X R"™ [ —00, +0] be Borel measurable. Let p. be a
Borel probability measure on R™. Assume that f(-;x)is Ls.c. and convex for a.e.
xe R™. Then there is a countable collection U of Borel measurable functions u:
R" - R" such that Uix}Ndom f(-; x) is dense in dom (- : x) for a.e. x, where

Ux)={ulx) ue U}.

Proof. Redefine f( - ; x)to be identically +00 on the set of measure O where it
is not lower-semicontinuous and convex.
Define a multifunction K, : R™ > R" by

Kix)={ue R": f(-:x)e R}

Since f is Borel measurable, the graph of K, is a Borel set. and therefore by
[6. Thm. 2], K, is measurable with respect to RB(R™)*, the completion of the
o-algebra of Borel sets under the measure u. Consequently,
S, 2{x: f(u; x)e R for some u}
={x: K\ (x)# D}
=K7'(R"eBR™*
Define a multifunction K, by
Kix)={ueR": flu.x)= -0}
An argument parallel to the preceding one reveals that
S, 21{x: flu; x) = —00 for some u}
={x: Kx(x)# DYe BR™)™.
Let

=40 xeS-and flu; x)<+00,
BUXIZ0 fuix)  otherwise.

7 The notation signifies that X, is a subvector of X,.
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Since (R" X $5)N{(u, x): f(u: x)<+0le B(R™)*, g is B(R™)*-measurable. |f
x €S, f(-; x) is identically —o0 on its effective domain; hence. for each XeR™
g(- i x)isalower-semicontinuous convex function with the same effective domain
as fi -1 x).

Let T=S5,US,. By [6. Thm. 5], there is a countable collection U of
B(R™)*-measurable functions u: T— R" such that U(x)Ndom g( - . x) is dense
indom g( - : x) forevery x € T. Extend each function in U to a functionon R™ by
making it identically 0 outside T. 1f u € U, there is a Borel measurable function
i: R™-> R"suchthat u=rgae. (u)[8. p. 145];let U be the collection consisting
of one such & for each ue U. Then Uix) = Ulx) for a.e. x€ R™ since U has
countably many elements. Hence, there is a Borel subset T of T such that
w(T" = u(T) and U(x)Ndom g( - ; x) is dense in dom g( - : x) for each x € T°.
Since dom f( -, x)=dom g(-;x) for any xe R™ and dom f(- . x)= @D if x¢ T,
the collection U has the desired property. O

Proof of Theorem 3.4. Let | =k = K. Assume that Pi+ 1 15 essentially defined
and there is a Borel measurable function gy, , such that g, (1 x,) = py . (- X )
fora.e. x, and ﬁ‘,fﬂ( 5 x) 1s Ls.c. and convex for a.e. x,. Also assume that

ﬁtﬂ(ljki %) Z 80wl + ¥(x,)

tor every u, and every x,, where § and y have the nonpositivity, mean, and
covariance properties of 8, and «,, respectively. in (c).

Let P/ be the problem formed from P, by replacing f,., with 5o,
Proposition A.1 (Appendix) implies that p)( - : x,)> - for a.e. x,. Then by
Proposition A .3, p(k'( -1 x)isls.c. and convex for a.e. x,. Since ﬁtﬂ( © X ) >~
and ¢, (- ; x)>—00fora.e. x,. A cx,)isls.c.and convex fora.e. x, by{7. Thm.
9.3). As a finite sum of Borel measurable functions. it is Borel measurable.
iemma 3.5 reveals the existence of a countable collection U of Borel measurable
functions u: R* = R™* such that U(x,)Ndom r( - : x,)is dense in dom r( - LX)
torevery x, € S, where S is a Borel set of measure 1. Let T be a Borel subset of S of
measure | such that x, € T implies r( - : x,) and p}( - 1xy) are Ls.c. and convex.

Redefine r, and p} to be identically +o0 outside T. Then for any z € R™ ' and
S
e R

pitz: x)=lim inf (inf oz, ug x,))

2"~

!

lim inf {ri(u, x) flue -, — 2l < 1/n}

n - o

limoinf {r (u, (x; x) - Jlu - i) =zl /n u e UL

n—x

It follows that p} is Borel measurable. An argument identical to one in the proof of
Proposition 3.2 shows that p, is essentially defined and p,( -1 x, ) = P Xk 1)
fora.e. x,

By Proposition A.1, there functions & and ¥ in L,(R™ *) with values in
[--2¢. 0] such that
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ﬁ(k)(llkwl; Zkfl)gé(gk fl)“Ekfl”z*'}"(!k—l)

for every u, , and every x, _,; also, E|8((Xx. )b X)) < +0if 1 =i=k® Then by
Proposition A.4, pi( - ; x,_,) is |.s.c. and convex for a.e. Xi_1.

That completes the induction step. The induction hypothesis is obviously true
ifk=K. 0O

Appendix. These propositions are restatements of some propositions in [5],
whose numbers are displayed in parentheses.

PrOPOSITION A1 (2.2). Assume for each 0=k =K,

(a) Forsome selected functions B, and a, in L ,(R>*) with values in [-o0, 0],

Gty %) Z Bl + e (x,)

for every w, and every x,.
(b) E|Bu(Xi)b(X)|<+0 if 0=i=k (X, is a subvector of X,.)
(¢) {w: Aw =0, w=0}={0}.
Then, foreach 0=k =K, Ep,(us -\; X, )< +0, and there are functions 5, and
i in L{(R>%), with values in [~00, 0], such that

ﬁkﬂ(ljk§Sk);ak(fk)ltlfkllz+7k(5k)

for every u, and every x,.

ProposITION A.2(3.2,3.3). Let 1 Sk=K Ifc,(-;x) and p.(- VX ) are
convex for every x,, P (" ; X, _,) is convex for every x, ;.

PropOsITioN A3 (3.4). Let 1=k=K Assume that {w:A,w=0,
w20t ={0}. Fix x,. If c(-;x) and p.\( Xi) are Ls.c. convex functions and
pil+ 5 xi ) > —00, then p( - : x,) is Ls.c. and convex.

ProPOSITION A4 (3.5). Let | =k=K. Fix x, . If p(- x4, %) is Ls.c.

and convex for every X, and if p(-; x, )> -0, then p(- y X -y) is Ls.c. and
convex.
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