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Many actual situations can be represented in a realistic manner by the two-
stage stochastic nonlinear programming problem Min,Emin,[e(z)+¢ ()]
subject to g(z)+h(y)=b, where b is a random vector with a known dis-
tribution, and E denotes expectation taken with respect to the distribution
of b. MapaNsky has obtained upper and lower bounds on the optimum
solution to this two-stage problem for the completely linear case. In the
present paper these results are extended, under appropriate convexity,
concavity, and continuity conditions, to the two-stage nonlinear problem.
In many cases of practical interest the calculation of these bounds will re-
quire only slightly more effort than two solutions of a deterministic problem
of the same size, that is, a problem with a known constant value for the
vector b. A small nonlinear numerical example illustrates the calculation of
these bounds. For this example the bounds closely bracket the optimum
solution to the two-stage problem.

N THIS workt we obtain upper and lower bounds for the solution of the
following two-stage stochastic nonlinear programming problem

Minimize, Emin,[e (z)+¢ ()],

subject to g (x)+h (y) =0, @

where ¢ () is a scalar function of the n;-by-1 vector z, ¢ (y) is a scalar func-
tion of the nq-by-1 vector y, g (x) and h(y) are each m-by-1 vectors whose
components are scalar functions of their arguments, and b is a random
m-by-1 vector with known distribution. E denotes the expectation taken
with respect to the distribution of b. It should be noted that the constraints
of problem (1)-include any nonnegativity requirements on z and y.

Many actual situations can be represented in a realistic manner by the
two-stage stochastic problem (1). One such example is that of a manu-

* Present address: Stanford University, Stanford, Calif.

T Vector notation will be used throughout this work. With obvious exception,
lower case Roman letters will denote column vectors and Greek letters scalars.
A prime will indicate the transpose. A subscript will denote a specific vector or
scalar such as the 7th vector b; and the sth scalar v;. A second subscript will denote
the component of the vector, thus b;; will denote the jth component of the <th
vector b;.
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facturing-inventory problem. The random vector b represents a demand for
manufactured products that can only be specified in advance by its dis-
tribution. The vector 2 determines the amount of each product that will
be made during some period before the actual demand is known. This
first stage production of products corresponding to b is given by the vector
g(x) at a cost ¢ (x). Once the actual demand b is known, we are free to
choose the optimum value of the vector y that will compensate at minimum
cost for shortages, that is, negative components of g(x)—b. This is the
second stage, and results in a production or outside purchase vector h (y)
at a cost of ¥ (y). The problem is to select the first stage production
vector x so as to minimize the expected value of the total cost ¢ (z)+¢ (y).

Anotherexampleisa capital investment problem. Here, bmay represent
the required production rate during a typical period, again specified by its
distribution only. The vector x determines the capital investment to
achieve a production rate of g (x). The value of ¢ (z) is the appropriately
discounted cost per period. When the actual required production rate is
known, any shortages are met by an optimum choice of the vector y,
which gives the additional production rate h(y) at a cost of ¢ (y). The
problem is to choose z so as to minimize the expected value of the dis-
counted cost per period.

A linear ‘two-stage’ problem has previously been discussed by DaNTz1G.
The results given in the next two sections are essentially generaliza-
tions of the inequalities obtained by Mapansky® for the corresponding
stochastic linear programming problem. The linear results are, of course,
included in the results presented here.

For convenience, we define the function v (b, ) as follows:

v (b,2) =min,{e (@) +¢ ¥)]g (@) +h () 2 b}.

The two-stage problem (1) can now be abbreviated as min,Ey (bx).
When stated in this form it should be kept in mind that, in general, this
represents a constrained minimization in the z-space. Thus, throughout
this work we assume that there exists a convex set K such that for each « in
K there is an associated y such that g (x)+h (y) =2b for each b. We denote
by ‘feasible 2’ as those z in K.

Certain convexity and concavity properties are needed in what follows.
We use the commonly accepted definition that ¢ (x) is convex if, for
021,

(21

(1=2)¢ @1) +2¢ (22) Z o[ (1 =N )1+ Nz

for all z; and x, in the convex region of definition of ¢(z). The function
¢(x) is concave if the inequality sign is reversed.

The results presented here are of practical importance because they
give an upper and a lower bound to the two-stage stochastic problem (1)
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in terms of the solutions for two nonstochastic™ problems of the same size
as the original problem. In many cases the bounds obtained may be fairly
close, as indicated by the numerical example in the last section. In order
to obtain the lower bound (see Theorem 3) we solve the single deterministic
problem in (n;-+n,) variables and m inequalities,

min,y (£b,x) =min., {e (@) +¥ () |g @)+ (y) Z Eb}. @)

We denote by Z (Eb) the value of  which gives the minimum for (2). For
any b with a finite distribution we obtain the upper bound given by Theorem
4 by solving a similar problem to (2) but with a different right-hand side
veetor, bumax, as follows:

MingY (bmax,) = ming ,{e @) +¥ @)lg @) +hY) Zbmax.  (3)

The vector bmax i chosen so that bum..=b for every b in the finite distribu-
tion.

An important class of problems is one where ¢ (z) and ¢ (y) are convex
functions and every component of g(z) and h(y) is a concave function
of its variables. This class of problems is distinguished by the fact that for
any fixed vector b the well-known necessary and sufficient Kuhn-Tucker
conditions" for a global minimum apply. In particular, they are valid
for the two problems (2) and (3). For such problems efficient computa-
tional methods have been developed. The gradient projection method!®
and convex partition programming® are two such methods that have been
used to solve many problems of this class.

The original problem (1) can also be solved directly for the partially
linear case when ¢ (y) and h(y) are linear and b has a finite and discrete
distribution, m;, 7=1, ---, I. This is done by introducing vectors
ys 2=1, - -+, [, each of the same dimension as y. A formulation equiv-
alent to (1) is given by the single deterministic problem with 7n;+In,
variables and ml constraints,

min, ;. {e (t)+ 21 mab ()lg @) +h @) Zbd.  G=1,---,1) @)

Computational advantage is taken of the block diagonal structure of this
formulation by noting that for any fixed x, the minimum with respect to
the ¥, is obtained by solving I independent linear subproblems. The convex
partition programming algorithm'®'t is based on this structure and can be
used to solve the problem (4). Several large problems have been solved
successfully in this fashion on the IBM 7090 computer.

* The terms nonstochastic and deterministic will be used interchangeably.
They refer to a problem for which the right-hand sides of the constraints are con-
stants.

1 The roles of z and y are interchanged in reference 9.
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In the next section we derive some basic results that are needed to
establish the desired inequalities, and in addition are of independent
interest in connection with the parametric dependence of solutions to a
nonlinear programming problem on its right-hand side (parametric non-
linear programming). The third section contains the main results and
the final section gives a simple numerical example.

SOME BASIC RESULTS

Wz BEGIN by establishing certain results, some, more general than needed
for proving the inequalities of the next section, but which seem to be of
sufficient interest to warrant their presentation. We define the following
parametric nonlinear programming problem

min.f (z,a) subject to f(z,a) =0,

where 8 is a scalar function of the vectors z and a and f is a vector function
of zand a. We establish now two basic lemmas.
Lemma 1. The scalar function «(a)=min,{0(2,a)|f(2,0) =0} is a convex
Sunction of the vector a provided that 8 is a convex function of the vector [2'a’]
and each component of f is a concave function of [2'a’].

Progf. Consider two arbitrary fixed values of a, a1, and as, and let

a(a) =min 0 (z,a1) |f (2,01) = 0} =0 (21,01),
a (ay) =min,{ 0 (2,a2) |1 (2,02) =0} = 0 (22,02).

Note that (z1,01) and (25,a2) must satisfy
fz,a1) =0 and  f(22,a0) 20. 6)

Now since every component of f (z,a) is concave in [¢'a’] it follows that for
0=\=1.

Mzt A —N)zehai+ A —N)ae = M (21,01) + A —N)f (22,02)

®)

>0, (by 6)
Whence the point z=2\z+ (1 —N\)z, satisfies the constraint
f[z,kal—l— (1 —>\)0/2] é 0,
and hence
min.{ [z, a;+ (1 —N)aallflz, a1+ 1 —2N)a] =0} @
é 0[)\21"{" (1 - K)Zz,)\al'l— (1 —>\)(12].
Now
ahai+ (1 —N)az] = min.{6[z\a1+ (1 —N) ae]|fle, A+ (1 —N)as]}

é/@[)\zl—i- (1—)\)32,>\a1+ (1—)\)(12] (by 7)
SN (z1,a1)+ (1—N)6 (22,02) [by convexity of 6(z,a)]
=)\0£(a1)+(1_)\)0£(a2). (by 5)
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Hence
oA+ 1=V a] S Na(a1) + 1—N)a(an).

Lemma 2. The scalar function o(a)=min,{0(z,a)(z,a)|f(z,a)=0} s a con-
vex and continuous function of the vector a provided that 6 is a convex and con-
tinuous function of the vector [2'a’], and each component of f is a concave and
continuous function of [2'a’].

Proof. The convexity of a(a) has been established in Lemma 1. It
only remains to show its continuity. Let a; and a, be such that there exist
2z and 2z, that satisfy f (21, 1) = 0 and f (2, a;) = 0. It follows from the
concavity of f that for 0=A=1

fa4 (L=N)zz ar+ (1 —=N)a] = A (2,01) + (L —=N)f (20,02)
=0.

Hence for a=»Aa;+ (1—2\)a; the value of z=Nz;4 (1 —\)z. satisfies f(z,a) =0.
It follows that the set of vectors a over which there exist feasible z is convex
and hence the set of a’s for which there exist a(a) is also convex. Since
a(a) is a convex function over a convex set of a’s it is continuous at every
interior point of this convex set.

Now let a be on the boundary of this convex set and consider a sequence
{a} such that lim;_.a;=a. Let z; be the solution of min,{6(z,a.)|
f(z,a;)=0}. Hence f(2:,a:)=0. Taking the limit superior™ as 7 tends to
infinity and invoking the continuity of f gives

F(lim;w2i,a) =0.

Hence .
min,{0(z,a)|f(z,0) 20} = 0(lim,wiya),
and a(e) =min{6(z,a)|f(za) 20}
< 0(limiswiy@)
=Timise8(2:5,:). (by continuity of )
But

a(a) % h_mi»ooo(ziyai) 3

hence a(a)=1im..0(z;a;).
In a similar manner
a(a) = li_r_n,-.,wﬂ(z,-,a,v) .

Therefore a(a) =1im,...0(z:,a;).
TaEOREM 1. The scalar function a(b)=mingy (b,z) defined by

a(b) =mingy(b,r) =minmin, {¢(z)+¢(y)|g(x) +h(y) = b} (8)

* We denote the limit superior by lim and the limit inferior by lim.
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1s a convex function of b, provided that ¢ (x) and Y(y) are convex functions and
the components of g(x) and h(y) are concave functions of their respective
arguments.

Proof. Let z=|:;:|, 0(z,a) =¢(z) +¢¥(y),a=ba(a) =a(b) and f(z,a)=

g(z)+h(y)—b. We have only to show that 8(z, a) and f(z, a) are re-
spectively convex and concave in [¢'a’] in order to invoke the Lemma 1
and prove the theorem. From the assumed concavity of g(z) and h(y) we
have

9T+ (1 =Nz Z Mg (1) + (1 —=N)g(2),

Ayt (L—=N)ye) Z M (y1) + (L—N)h(ys),

—'>\b1— (1—>\)b2= —)\b1'—‘ (1—")\)1)2.

Addition of the last three relations and using the relations f(z,a) =g(z)+
h(y)—0b and a=>b gives

i+ (L=N) 22,01+ (1 —N)bo] = Nf (21,b1) + (1 —N) £ (22,D2),

establishing the concavity of f(z, a) in the vector [z'a’]. Similarly the
convexity of 6(z, a) in the vector [2'a’] is established.

It is interesting to note that a(b) is also a nondecreasing function of b,
that is a(b;) S a(by) for by=<b,. This follows from the simple fact that if
by <bs then g(x)+h(y) = b, implies g(z)+h(y) =b; .

Theorem 1 is a generalization of Madansky’s!®! Lemma, 1 to the present

nonlinear problem.
CorOLLARY 1. The scalar function o(b)=mingy(b,z) defined by (8) is a
continuous function of b provided that o(x) and ¢ (y) areconvex and continuous
Sunctions and g(x) and h(y) are concave, and continuous functions of their
respective arguments.

Proof. This Corollary may be proven by using Theorem 1, or more

simply by using Lemma 2. By letting z= [:;],6 (z0)=¢ @)+¢ (),

a=b,a(a)=a®) and f(z,a) =g (x)+h (y) —b; Lemma 2 may be invoked to
establish the continuity of a(a) and hence that of a(b).

We proceed now to establish a theorem that is essentially a generaliza-
tion of Theorem 2 of BearLe™ and of a similar theorem by Dantzig.™
TueorEM 2. The function v (b,x) =min,fe (x)+¢ (y)lg @) +h(y)=b} isa
convex function of the feasible x for any fixed b provided that ¢ and ¥ are convex
Junctions and the components of g and h are concave functions of their re-
spective arguments.

* We are indebted to ALBERT MADANSKY for pointing out the need for the con-
tinuity assumptions in this Corollary.
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Proof. Define a=2z, 2=y, 0 (z,0)=¢@)+¥¥), f(2,0) =g () +h@y)—b
and a(a)=v (b,x). It can be easily shown (see the proof of Theorem 1
above) that the assumptions made in Theorem 2 on ¢ (z), ¥ (y), ¢ (z), and
h(y) ensure the convexity of 8 (z,a) and concavity of f(z,a). Hence the
Lemma may be invoked to establish the convexity of @ (a) or the convexity
of v (b, z) in z.

CoRrOLLARY 2. The function Evy (b,x) is a convex function of the feasible x
provided that the conditions of Theorem 2 are satisfied.

Proof. Since vy (b,z) is convex in z for a fixed b, integration over the
distribution of b still gives a convex function of z, Evy (b, z).

EXTENSION OF LINEAR RESULTS

In THIS section we consider a number of additional problems, the results
of which will serve as bounds on the original two-stage problem (1).

‘We mentioned earlier the nonstochastic problem of min,y (Eb,z). This
is the problem in which the right side of the constraints is replaced by its
expected value. Thus, for example, if we had a discrete distribution of the
vectors b; with probabilities «;, =1, - - -, [, then this problem becomes

mingy (Z::{ ;i bi)L).

We next introduce the ‘wait-and-see’ problem of Madansky,™
Emin, (b,z). In this problem one waits for an observation of the random
vector b and then solves the nonstochastic nonlinear programming problem
based on this observed b. This is in contrast to Dantzig’s™ two-stage
problem (1) where a decision  must be made at once without knowing b,
and a subsequent decision ¥ compensating for z is made after b is observed.
We recall that in terms of the function v (b,z), the two-stage problem (1)
is min By (b,z).

We are now in a position to derive one of the main results of this work,
Theorem 3.

TuEOREM 3. Let Z (Eb) be the solution of minyy (Ebx). The inequalities

Ev (b,%(Eb)) = min,By (b,x) = Emingy (b,z) = mingy (Eb,z)

hold provided that for the last inequality only, <t is assumed that ¢ (x) and
Y (y) are convex and continuous functions and the components of g (x) and
h(y) are concave and continuous functions of their respective arguments.
Proof. The first inequality obviously holds since the min,Ey (b,z) is
less than or equal to Evy (b,x) evaluated as some z such as & (Eb).
For the second inequality let & be that solution which minimizes Evy (b,r)
and let Z(b) be the solution which minimizes v (b,x). That is

min, (By (b,x) =FEvy (,%Z), and Emingy (b,x)=Ev[b,Z()].
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Since for every b, v (b,2) Zv[b,Z (b)], then By (b,3) = Ev[b,Z (b)] and hence
min, By (b,x) = Emingy (b,x),

which is the desired second inequality.

The third inequality is proved by using JENSEN’s inequality,” (Theorem
261), Theorem 1, and Corollary 1% of this paper. Jensen’s inequality states
that for a convex, continuous function 8 of a random vector z, EB(z)=
B(Ez). Since by Theorem 1 and Corollary 1 minyy (b,x) is a convex and
continuous function of b, it follows that

Emingy (b,z) = min,y (Eb,z),

which is the desired third inequality.

For the case where b has a finite distribution, it is possible to get a some-
what rougher but easier-to-compute upper bound for the solution of the
two-stage problem (1) by solving a single deterministic problem and ob-
taining a so-called ‘fat solution.” This result follows from the following
theorem.

Turorem 4. If the random vector b has a finile distribution, that s,
— 0 <bnin=b=Sbmax< o, then the ‘“fat solution’ mingy (Dmax,x) 78 greater
than or equal to the solution min,Ey (b,x) of the two-stage problem.

Proof. By definition we have

mingy (bmax,®) = mingmin,{e (x) +¢ (y) Ig @)+h () Z bmax}
and min, By (b,x) = min Emin,{e (z) +¢ () |g (@) +h (y) Zb}.

Now for any fixed z and b, every y that satisfies g(z)+h(y) Zbmax also
satisfies g(z)+h(y)=b. It follows then that v(bmax,z)=v(b,x) and thus
v (bmax,z) = Ey(b,z). Hence mingy (bmax,2) =min, By (b,x).

Another upper bound for the ‘wait-and-see’ problem Eminzy(b,z) can

be derived by using the theory of moment spaces of multivariate distribu-
tions. The derivation of this bound is identical with Madansky, reference
6, p. 201, once Theorem 1 and Corollary 1 have been invoked to show that
min,(b,z) is a convex and continuous function of b.
THEOREM 5. Provided that () and ¥(y) are convex and continuous junc-
tions, the components of g(x) and h(y) are concave and continuous functions
of their arguments, b is defined over a bounded m-dimensional rectangle
DiSb=by(— 0 <bi<by< ) and the b’s are independent, then

Emingy (byz) < 222U { T8 [(—1)74 (b, jys— (BD),)/ (bes—b1y)} -
min:c'Y(b3——f¢17h ) b3—f¢m,rn7 ),
where f; is an m-dimensional vector [fu, fa, - - -, fim] whose components are all

* This inequality can also be proved directly, but under somewhat more re-
strictive conditions, by using the duality theorems of nonlinear programming,[10:7]
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1’sand/or 2’s and the set of 2™ vectors fi, i=1, - - -, 2™ is the set of all possible
arrangements of 1’s and/or 2’s taken m at a time,* and (ED); is the expected
value of the jth component of b.

Note that in order to calculate the above bound one needs to solve in
general 2™ nonlinear programming problems, which may be a fairly lengthy
procedure.

We now state and prove our last bound, a lower bound for the two-
stage problem.

TareoreM 6. Provided that ¢ and { are convex functions and the components
of g and h are concave functions and Evy(b,x) is differentiable at x=Z(Eb)
then

min, By (b,x) = Ev[b,(Eb)|+[z—&(Eb)] VEy[b,Z(ED)],

where T(Eb) is the solution that minimizes v(Ebx), T is the solution that
minimizes Ev(b,x), and V s a column vector of partial differential operators:
(8/8s, - +,0/0%a,).

Proof. By Corollary 2, Ev(b,x) is a convex function of z. Now if a
convex function 6(x) is differentiable at some point z=2; it follows from
the definitions of convexity and differentiability that (reference 4, p. 485)

0(%2) —_ 0(1151) g (xz—xl)'VG(xl) .
Now if we let 8(x)=Ey(b,x) xz.=% and z;=Z(Eb) we have
Ey(b, ) 2 Ey[b,2(Eb)]+[2—Z(Eb)] VEv[b,Z(ED)],
which is precisely the assertion of Theorem 6 if we recall that Ey(b,%)=
min,Fvy(b,x).
Note that in order to use the bound given by the above theorem one
has to have bounds on £ that appear on the right-hand side. However, if

either £=xZ(Eb) or if VEy[b,£(Eb)]=0, then it follows from this Theorem
and the first inequality of Theorem 3 that Evy[b,Z(Eb)]=min,Ey(b,x).

NUMERICAL EXAMPLE

We taxe Example 2 of Dantzig,” change the linear cost function z-+2y
to the nonlinear cost x2-+2y? and eliminate the slack variables. We thus
consider the following problem in the scalar quantities z, y, and b.

Minimize, Emin, (2*+2y%),
subject to
—z=—100,
r+y=b,
=0,
y=0,

* For example for m=2, fi=(1 1)’, fa=(1 2)/, fi=(2 1)’, fi=(2 2)".
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where b is an unknown demand uniformly distributed between 70 and 80.
Figure 1 is a graphical representation of the problem. The dotted lines
2+y=70 and z+y=80 bound the feasible region when =70 and b==80
respectively. It is easy to verify that this example satisfies all the re-
strictions imposed by the various theorems and corollaries of this work.
This example illustrates that the inequalities can be used to obtain an
accurate estimate of min.Fvy(b,x) in a nontrivial case.

We begin first by determining the function v(b,z), which is the
min, (°42y°) subject to all the constraints. After some simple consider-
ations with the aid of Fig. 1 we conclude that

[ for 100=2=b;(y=0),
’Y(b’x)—{xz—l-Q(b—x)z for b=zz=0;(y=b—2x). (9)

To determine min,y(Eb,x), we replace b in (9) by its expected value
of 75 and find the minimum of y(75,2), which turns out to be

mingy (Eb,x)=3750 at z=&(Eb)=>50. (10)
By considering (9) and Fig. 1 it is possible to determine
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0 for 0=b;(xz=0,y=0),
24b° for 150=b6=0;

10,0004-2(b—100)* for b=150;
(z=100,y=b—100).
Hence
Emingy (b,x) =3756. (12)

To determine Evy(b,x) we have to consider three cases: 70=x=0,
80=x=70 and 100=2=80. The first and third cases are straightforward
and Evy(b,z) is obtained from (9) by E[z*+2(b—zx)*] and E[2] respectively.
For the second case, 80=x=70, we have from (9)

b=x =80
_ 2 db f 2 _.\db
Ey(bzx) ~—/;=70x 1—6+ L +2(b x)i—ﬁ'
Carrying the above calculations results in
32" —300z+14(33800) for 70=z=0,

14 o[ — 24 £*+1702"— 12800z
/l?i-[-}é/?1024000)] for 80=zx=70, (13)
z for 100=2z=80.

By (bx)=

From this it is easy to conclude that

min, By (b,x)=3767 at z=Zx=>50. (14)
From (10) and (13) we determine that
En[b,z(Eb)]=3767. (15)

Hence the inequalities of Theorem 3 are satisfied by the results given by
(15), (14), (12), and (10), that is

3767=3767>3756> 3750,

which shows that the easily calculated first and last quantities give a good
estimate of the middle two, in a nontrivial example.

We now compute mingy(bmax,x)=mingy(80,2). From (9) and Fig. 1
we see that mingy (bmax,z) =7v(80,53.3) =4267. As asserted by Theorem 4
this is larger than Emingy(b,x) =3756.

We also note that by considering various first and second partial de-
rivatives of v(b,z), mingy(b,x) and Ey(b,z) as given by (9), (11), and
(13) we conclude that min,y(b,z) is a convex and continuous function of b,
v(b,z) is convex in z for a fixed b, and that Evy(b,z) is a convex function of
2. These indeed are the assertions of Theorem 1, Corollary 1, Theorem 2,
and Corollary 2.
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We next compute the expression given in Theorem 5 with the help of
(11) as follows

[2(75—70)(80)24 (80—70)]—[2(75—80)(70)24 (80—70)]=3767,

which is indeed greater than Emin.y(b,x).

We finally turn to Theorem 6. From (10) and (14) we have £(Eb) =%.
Hence by Theorem 6, min.Evy(b,x) = Evy(b,&(Eb). But by Theorem 3
the reverse inequality must also hold, hence min,Evy(b,z) = Ev(b,), which
is indeed the case as observed from (14) and (15).
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