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Consider a linear-programming problem in which the ‘‘right-hand side’’
is a random vector whose expected value is known and where the expected
value of the objective function is to be minimized. An approximate solution
is often found by replacing the ‘“‘right-hand side’’ by its expected value and
solving the resulting linear programming problem. In this paper conditions
are given for the equality of the expected value of the objective function
for the optimal solution and the value of the objective function for the ap-
proximate solution; bounds on these values are also given. In addition, the
relation between this problem and a related problem, where one makes an
observation on the ‘“‘right-hand side’”’ and solves the (nonstochastic) linear
programming problem based on this observation, is discussed.

In [3] Dantzig presents a two-stage linear programming problem where the
“right-hand side’” is a random vector and the expected value of the objective
function is to be minimized. It was stated there that one cannot in general re-
place the “right-hand side” by its expected value and obtain an optimal solu-
tion. For example, in [5] the expected value of the objective function for the
optimal solution is $1,524,000, whereas the value of the objective function when
the “right-hand side” is replaced by its expected value is $1,000,000. What we
shall show is that the direction of the inequality in that example is the case in
general.

This procedure of replacing the “right-hand side” by its expected value and
solving this linear programming problem is quite common, however, and, as
Dantzig conjectures [3], probably provides an excellent starting solution for any
improvement techniques which might be devised. It is therefore of interest to
examine under what conditions the expected value of the objective function for
the optimal solution is close to the value of the objective function for this “start-
ing solution.” This we shall do. More precisely, we shall give conditions for the
equality of these two values and also bounds for each of these values.

However, let us first consider the usual one-stage non-stochastic linear pro-
gramming problem, which, for reasons that will become evident later, we write
in the form:

A$+By=b, x;O, ygo)
minimize ¢’z + f'y with respect to z and y
where A and B are known m X n; and m X m. matrices, respectively, b, ¢, and

* Received February 1959.

1 I am grateful to George B. Dantzig and Philip Wolfe for their very helpful comments
and suggestions.
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f are known m, n,, and n, dimensional vectors, and = and y are, respectively,
n; and n, dimensional vectors of activity levels to be determined.:

Let us denote min, (¢'z + f'y) for given z subject to the above restraints as
C(b, ). We shall now give a result analogous to Theorem 3 of Beale [1].

Lemma 1: min, C(b, x) s a convex function of b.

Proof: Fix b = b; and define &(b;) as the vector which minimizes C(b, )
subject to (b)) = 0, A%(by) = by .! Fix b = b, and define #(b;) analogously.
Now let b = Aoy + (1 — M)be, 0 = N £ 1. There is a vector z(b) such that
z(b) = Mi(by) + (1 — NED) = 0 and b = Ax(b) = NE(bh) +
(1 — N)AZ(by) = Nb1 + (1 — N)bs . Therefore C(b, z(b)) = NC(by, £(b1)) +
(1 — N)C(ba, &(b2)). But for b = Aoy + (1 — A)b, there is an £(b) such that
min; C(b, ) = C(b, Z(b)) £ C(b, z(d)),i.e.,

C(NbL + (1 = Mbe, £(b)) = NC(by, £(b1)) + (1 — N)C (b2, Z(b2))
= Amin C(by, z) + (1 — \) min C(bs, x).

An alternative proof is the following. Consider the dual problem, maximize
b’z subject to 2’A = ¢, /B = f. If Z maximizes b’z and satisfies these restraints,
then b’z = C(b, £(b)). When b’ = A0’y 4+ (1 — N)b'2, b'Z = Nb'12 + (1 — N)bez.
If z, maximizes b1z and Z, maximizes b’»z, then

min C(b, z) = C(b, £(b)) = b’z < \Nb15 + (1 — \)baz

= NC(b1, £(b)) + (1 — N)C (b2, T(b2)),
as above.

Lemma 2: min,, C(b, z) is a conttnuous function of b.

Proof: If ; = O satisfies Az; = b, and 2 = 0 satisfies Az; = by, then z =
A+ (1 — Mz, 0 £ N = 1, satisfies Az = Aby 4+ (1 — N\)b2. Hence the set
of b’s for which there exists an z which minimizes C(b, z) is convex.
Since min, C(b, x) is a convex function over a convex set of b’s, it is continuous
at every interior point of this convex set.

Let b be on the boundary of this convex set. Consider the sequence {b;} such
that lim, . b; = b, £(b;) = 0, and AZ(b;) = b; for each 7, where £(b;) minimizes
C(b;, x). Now

lim min C(b;, «) = lim C(b;, #(bs))
2 min C(lim b;, x) = C(b, (b)) = min C(b, x)

by definition of Z(b).
Also by convexity of min, C(b, ),
lim min C(b;, ) < min C(b, x).
Hence
lim min C(b;, ) = min C(lim b, ).

i>0 oz 1>

1 Without loss of generality we can disregard the By term in the proofs of Lemmas 1
and 2.
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In Dantzig’s two-stage stochastic linear programming problem referred to
above, one must first make a decision , then observe the random ‘‘right-hand
side” b, and finally, in the second stage, compensate with activity vector y for
“inaccuracies” in the first decision. The problem here is to find z subject to
Az + By = b,z = 0,y = 0, which minimizes £C(b, ) = E min, (c'z + f'y),
under the assumption that for each (b, x) there exists a y such that (z, y) is
feasible.” ‘

A related problem, also called a stochastic linear programming problem
(cf., e.g., [11]) is the following. The linear programmer waits till an observation
on the random b is made and then solves the (nonstochastic) linear programming
problem based on this observed b. We shall call this the “wait-and-see’ situa-
tion and, in contrast to this situation, we call the situation Dantzig treats a
“here-and-now”’ situation.

Let Z(Eb) be the decision which minimizes C(Eb, z), i.e., C(Eb, £(Eb)) =
min, C(Eb, x). Then it is obvious that

EC(b, &(Eb)) = min EC(b, z).

In the example of [5], EC(b, Z(Eb)) = $1,666,000 and min, EC(b, ) =
$1,524,000.

We also note immediately that the value of the objective function in Dantzig’s
two-stage ‘“here-and-now’’ problem is at least as great as the expected value of
the objective function of the “wait-and-see” problem, i.e.,

min EC(b, x) = E min C(b, x).

For let £ be that x which minimizes EC(b, z) and let £(b) be that x which
minimizes C(b, z). Then min, EC(b, ) = EC(b, £), E min, C(b, z) =
EC(b, £(b)), and, since C(b, £) = C(b, Z(b)) for every b, EC(b, &) =
EC(b, (b)).

Finally, since by Lemmas 1 and 2 we have established that min, C(b, z) is a
continuous convex function over the convex set of b’s, when b is a random
vector we see by Jensen’s inequality® that

E min C(b, z) = min C(E b, z).

A direct proof of this fact due to Vajda [12], not relying on convexity and
Jensen’s inequality, is provided by noticing that for any b, min, C(b, z) =
b'2(¢c) = b’z for any other feasible z, and hence E min, C(b, z) = Eb’z for any
other feasible z. In particular, then, if z is the vector which maximizes Eb’z
subject to 24 = ¢, z = 0, then F min, C(b, x) = Eb'z = min, C(Eb, z) by
duality.

2 E will denote the expectation with respect to the distribution of b throughout this
paper.

3 A simple proof of Jensen’s inequality for continuous convex functions and arbitrary
distributions is provided by noting that when the sets studied in Theorem 2 of [4] are
unbounded, then the moment space R may be a proper subset of the convex hull D. But
by a simple limiting process, Theorem 2 of [6] is the desired inequality.
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We have thus proved the following theorem.
Theorem:

EC(b, £(Eb)) = min EC(b, z) = E min C(b, z) = min C(Eb, ).

In particular, the inequality min, EC(b, ) = min, C(Eb, z) is the generali-
zation of the observation in [5] that the expectation of the objective function
for the optimal solution ($1,524,000) was greater than the minimum value of
the objective function ($1,000,000) when the “right hand side” is replaced by
its expectation.

It is well known that, when the probability measure on the set of b’s is count-
ably additive or the set of b’s is with probability one finite in number, equality
holds between E min, C(b, ) and min, C(Eb, z) if and only if min, C(b, x) is
a linear function of b (cf. [8], p. 265).

Trivially, if £(b) = Z for all b, or more generally if C(b, x) = C(b, £(b))
except on a set of b of probability measure zero, then min, EC(b, z) =
E min, C(b, z).

A simple sufficient condition for equality between min, EC'(b, z) and
E min, C(b, x) is that C(b, x) is a linear function of b, for then min, EC (b, x) =
min, C(Eb, z), and so by the above inequality min, EC(b, ) = E min, C(b, z).
From this observation the results of [9] and [10] become evident. For in these
papers, the dynamic problem can be thought of as a succession of static ‘‘here-
and-now”’ problems wherein C'(b, z) (in our notation) is of the form o’;1x +
o/sb + wasr’ + boub’ + zash’ + ba'sx’ where oy is an ng-vector, ay is an m-vector,
and a3, as, and a5 are n; X n1, m X m, and n; X m matrices, respectively.
Hence in minimizing C(b, ) with respect to z, the quadratic term in b is not
involved and so essentially C(b, ) is a linear function of b. We see, then, that
the z which minimizes EC(b, z) is the £ which minimizes C'(Eb, x), the result
of [9] and [10]. In fact, we obtain the further result that if C(b, ) can be ex-
pressed as C1(b, ) + C2(b) where Cy(b) involves only b (and not z) and C1(b, z)
is a linear function of b, then use of Eb in place of the random b and solving
the “certainty” linear programming problem also solves the ‘uncertainty”
problem.*

For the ‘“here-and-now” problem, the upper and lower bounds on
min, EC(b, z), namely EC(b, Z(Eb)) and min, C(Eb, z), respectively, are
easily computable. These bounds are also upper and lower bounds on
E min, C(b, z), the expected value of the objective function of the ‘“wait-and-see”
problem. We can, however, get an easily computable and sometimes sharper
upper bound for E min, C(b, z) by the following considerations.

4 Reiter [7] studies the general problem of finding sufficient conditions for the solu-
tion of a stochastic problem to be that of a ‘“‘surrogate’’ problem where the probability
distribution is replaced by something simpler. His condition, in our case, is that C(b, ) =
i Ai(x)Bi(b), where A;(x) > 0, B;(b) > 0, in which case the z which minimizes
i1 Ai(z)EB;(b) solves the stochastic problem. If we let n = 3, By(b) = 1, Bs(b) = b,
Bs(b) = C2(b), and As(x) = 1, then C(b, z) = Ci1(b, x) + C2(b) = A1(x) + A2(x)b + Bi(b),
so that our result is a special case of Reiter’s where the ‘“‘surrogate’’ is Eb.
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By using the theory of moment spaces of multivariate distributions, an upper
bound on Eg(X) has been obtained (cf. [6]), where X' = (X;, ---, X,) is
defined over an r-dimensional rectangle I, (i.e., —» < a; < a2 < «) and g(X)
is a continuous convex function of X. The upper bound has the following simple
form when the X’s are independent:

Let the 27 vertices of I, be written as (@4, , G245, ***, Qrs;) Where
¢:; (i = 1, ---, r) takes on the values 1 and 2 and aq < az for all <. Then®

T (—=1)% (g, — .
Eg(X) = ZH( 1) aze, — EX;) g(mz,, -+, ar5,) = H¥(EX),
Py (aj2 — aj1)

where ¢; = 3 — ¢;.

We have shown above that min, C(b, z) is a continuous convex function of
b. The result just cited can then be rewritten as follows.

Theorem: If b is defined over a bounded m-dimensional rectangle
I.(—® < B < By < «) and the b’s are independent, then

mo(__1)V%i(R., — )
Emin C(b,2) s 5 [T S0 Bies = BV 11ir (g, ),
s s =1 (Biz — Bj) z

= H*(Eb)

where By = (B13,, ***, Bni,), $; takes on the values 1 and 2, ¢; = 3 — ¢«
and ¢ is the set of 2™ m-dimensional vectors of 1’s and 2’s.

When the b’s are not independent, a simple formula for the upper bound on
E min, C(b, z) based on the theory of moment spaces cannot be given. How-
ever, the upper bound can be computed as follows. Consider the class of sets
of m 4+ 2 points of the form By . Form the S = (mz—l- 9
dimensional space using each set, of these m -+ 2 points as vertices. Let H,*(Eb)
be the point where the ray (by = Eby, -+, by = Ebp, bpya = 0| — =
f < ) pierces the upper boundary of the sth such simplex, s = 1, ---, S.
Then

) simplices in m + 1

H*(Eb) = max H,"(Eb) = E min C(b, z).

A proof of this result is given in [6].

It has also been shown by Dantzig [3] (cf. also Theorem 2 of [1]) that EC(b, x)
is a convex function of = in a p-stage linear programming problem where only
the right-hand side of the equation for the first stage is random. Let us now
utilize this fact to obtain an easily computable lower bound for min, EC(b, x)
which is sometimes sharper than E min, C(b, z). Since EC(b, z) is convex in
z, min, EC(b, ) = EC(b, ) is greater than or equal to the value at Z of a
lower supporting hyperplane to the convex hull of EC(b, z) which passes
through any point (z’, ---, z%,, EC(b, z")) on the curve EC(b, z)

5 If some elements of X are non-random, without loss of generality assume they are the
last p X’s. Then the product runs to 7 — p and @y = a2 = X;fori=r — p + 1, «--, 7.
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(cf. [2]), where 20 = (%, - - - , 2,%). Then there are real numbers o, o’, - - - ,
o, (depending on z°) such that

7]
min EC(b, ) = ad’ + D % = H'(Z),
z j=1

say, where EC(b, 2°) = o + >4 oz Take a° = (Z(Eb)), an easily de-
termined point. Then if EC(b, x) is differentiable at this point,

4 j=1,-..’nl

ox; 2 =2 (Eb)
and a0 = EC(b, Z(Eb)) — >.7 «,Z;(Eb), where the derivative is taken in
the direction from z° to Z.

Hence, one can determine the coefficients ag, o, +++, @, without solving
Dantzig’s ‘“here-and-now”” problem and, if one has bounds on &, can utilize this
information to get a lower bound on H°(Z). This then yields a lower bound on
the value of the objective function of Dantzig’s “here-and-now”’ problem which
is independent of the solution of the problem.

Let us now look at Example 2 of [3] more closely with the above inequalities
in mind. In this example,

= (xu, T), Yy = (Tu, T2),

11 0 o0 ,
A—(]. O>, B—‘<l __1), 4 —(1,0),

 =1(2,0), and b = (100, ds).
In this case,
C(b x) — {xll if T11 > dZ
’ Ty + 2(d«2 - xu) if an=d’

If we consider the dual problem, we find that we must maximize — 100 y; + daye ,
where the restraints on the y’s can be illustrated geometrically by observing
Figure 1.

T N\

Fic. 1
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The points (0, 0), (0, 1), or (1, 2) provide an optimal solution to the dual
problem, depending on the value of ds . Therefore in this case min, C(b, z) is
really a function of ds, namely

0 if =<0
min, C(b, ) = {ds if 0<d,= 100,
2dy — 100 if 100 < d»

which is clearly convex.

If d: has a uniform distribution between 70 and 80 (as in [3]), then
E, min, C(b ) = Ed, = min, C(Eb, ) = 75, since min, C(b, z) is a linear
function of b in this range. Also,

+ . _ __(70 — Edy) (80 — Eds) _ _
H7(Eb) = H*(Eb) 80 =70) 80 + 80 = 70) 70 = Ed, = 75.
Since ds is assumed to be uniformly distributed between 70 and 80,
— 1 + 150 lf T é 70
EC(b, z) =4 775+ (75 — 24)*/10 if 70 < zy < 80.
211 lf 80 < i

Note that EC(b, x) is convex in z. This function attains its minimum, 77.5,
when z;; = 75. Hence, min, EC(b. ) = 77.5 = EC(b, £(ED)), since £(Eb) =
Edz = 75.

For example 2 of [3],

—1 ifen =70
OBC(b, ) _ Jau =75 & oo oo < g0
01y o
1 if 80 < ay

and Zyu(Eb) = 75, so that o’ = 0 and the above inequality yields the inequality
min, EC(b, z) = EC(b, £(Eb)). But since we already know that

EC(b, (Eb)) = min, EC(b, z),

we see once again that equality holds between these values.
We see, then. that examination of the inequalities

H'(%) < min EC(b, z) < EC(b, #(Eb))

for the special “here-and-now’’ problem of Dantzig [3],
min C(Eb, z) £ E min C(b, z) < H*(Eb) or H*(EDb)
for the “wait-and-see” problem, and the inequality which relates the “wait-
and-see”” problem to the two-stage ‘“here-and-now’’ problem,
E min C(b, ) < min EC(b, z),
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yields information of use in evaluating whether or not the ‘“expected value solu-
tion” is a good approximation to the solution of a linear programming problem
under uncertainty.
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