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where R is s x m upper triangular and Q7 is # x u orthogonal, we have
r=QiRTy.
(Q, consists of the first m rows of ().)

Using a direct error analysis approach simiilar to that used in Section 2 the
calculated solution mav be written,

T=Q[{R "y te}te.
Expanding, we have,

T=0f ~0N{R Ty +e} +Q" (R Ty +e} +e
=0 —0IN{R Ty + e} +0"Qlx — Q" R764'x + Qi e, +e,

where
04 = RTQ{ —A.
Also
1101 =01 Q1 +60.70, + 07 60Q{ + 6017601,
hence '

T—x=(Q] Q) {R "y +e} +{601"Q, +07 00 —Q" R T o4}

P> T (4.1)
+01"e, +e, +60,760,x.

We can now estimate |& —a| from (4.1) by applying the inequalities (1.1),
(1.2), and (2.8). The dependence that interests us is that on the condition number

of 4, and provided epsy(A4) is small (say < 0.1), this dependence has the forn,
& —x|| <k epsy(4), (4.2)

as the terms in higher powers of epsy(4) can then be submerged into a term of
this form. As y(A4) =1, the terms just proportional to eps can also be accounted
for in this way.
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Approximations to Stochastic Programs with
Complete Fixed Recourse
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Abstract. The probability distribution of the data entering a recourse problem is
replaced by finite discrete distributions. It is proved that the convergence of the
objective functions of the approximating problems to that one of the original problem
can be achieved by choosing the discrete distributions in quite a natural way. For
bounded feasible sets this implies the convergence of the optimal values. Finally
some error bounds are derived.

1. Introduction
We are concerned with stochastic programs with complete fixed recourse,
which may be written as
min {¢' x +yp (x)| x€ X}, (1)

where X ¢ IR” is a closed convex polyhedral set, c€ R" is a constant vector with
transpose ¢’ and

(@) =J0(x 4(@), bw), gw))dP. 2)

A(w), b(w) and g (w) are an (X n)-matrix, an m-vector and an J-vector, respec-
tively, the elements of which are random variables defined on a probability space
2; #, P). Finally

Q(x, 4,5, ¢) =min{g'y| ye R", Wy =b — A x, v 20}, 3)

wlere H' is a constant (m x 7)-matrix (fixed recourse matrix).
We make the following assumptions:

A1) {z]|3yeR*:y =0, Wy=z=R"
A2) Voel:{ulueR™ Wu<q(w)}+0.
A.3) The elements of A (w), b (w), ¢ (w) are square integrable with respect to P.

Assumption A.1) assures the so-called complete fixed recourse, which means
that every violation of the “‘desired” constraints b(w) — A (w) x =0, which is
caused by choosing x € X before knowing the realization w € £2, can be compensated
by the recourse program (second stage or emergency program) stated in (3).
Necessary and sufficient conditions for A.1) were derived in 21

Assumption A.2) then guarantees that —according to the duality theorem of
linear programming —Q (x, 4 (@), b(w), g(w)) is always finite. If the practical
meaning of ¢;(w) is “‘penalty costs per unit of y,”, i.e. if g(w) =0 for all we 2,



P. Kali

then A.2) is obviously satisfied. Otherwise A.2) defines a convex polyhedr:.il cone
Ky, which has to contain ¢(w) for all we Q. Assumption A.3) asserts the existence
of w(x) according to (2).

We refer to the following known results ([27, 15)):

Theorem 1. For ge Ky, a) Q(x, 4, b, ¢) is continuous;

b) Q(x. 4, b, ¢) is convex in (4, b) for fixed (x, g} and concave in ¢ for fixed
(x, 4, b);

c) Q(x, 4, b, g) is convex in x for fixed (4,8, 9q).

Theorem 2. a) y(x): R* — R s finite and convex ;
b) w(x) is Lipschitz continuous:

c) if the probability distribution of (A (w), b(w), g(w)) is given by a density
function, then w(x) is continuously differentiable.

Theorem 3. For a finite discrete probability distribution, i.e. o =w; with
probability #,>0, ¢=1,..., %, and 2 p.=1, problem (1) becomes a linear
=1

program with (dual) decomposition structure, namely:

min ' v 4 3 p,g’ (w,) v
=1
subject to (4)
A@)x + Wy =b(w), i=1,... %
xeX; V=0, di=1,...,

Theorem 2 seems to suggest the application of some usual optimization method,
if a continuous type distribution is given. However, the repeated evaluation of
y(x) or its gradient involves the repeated numerical quadrature _of multiple
integrals, where the integration sets are polyhedral sets in R™*”*"** depending
on x, which seems to be a rather difficult task due to the present state of numerical
quadrature.

On the other hand Theorem 3 suggests to approximate the given probability
measure P by finite discrete measures P, or, equivalently, to approximate
(4(w), b(w), ¢(w)) by (vector valued) integrable simple functions (4,(w), b, ((f)),
4.(w)). As a matter of fact, this approach was already proposed in [7] for a spec‘lal
simple recourse problem, namely for W = (I, —1I), where [ is the (1 X m)-identity
matrix, and for constant 4 (w), b(w). And in spite of the fact, that these approx-
imating problems of type (4) become really large scale linear programs, just the
recent publications [1, 4, 6] indicate, that one can take advantage of some special
properties of these problems.

Our aim is to show, that this approximation is meaningful, i.e. that the
convergence of the approximating objective functions to the original one always

can be achieved by a rather natural choice of the integrable simple functions,
and to derive error bounds,
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1. Convergence

Let (4,(0), b,(w), ¢,(®)),»=1,2,..., bea sequernce of integrable simple func-
tions such that

r—oo

(4, (w), b, (@), ¢,(@)) —— (A (), b(w), g (w)) (3)

pointwise on Q,

"A,(U)) "m § ”A (CU)

= @l =lh@l., (9.

«=lg@)], (6

for all weQ(|--- |, means for vectors the maximum norm and for matrices the
corresponding matrix norm),

assumption A.2) is also valid for g, (w), v=12 (7)

y Ly e

Taking one of the usual partitions of R™ TEMER the elements of which are
halfopen intervals contained in one of the orthants, and choosing the norm
minimal vertex of every interval with its probability, one can obviously achieve
the requirements (5) and (6). But to assure (7), we have to be careful. If for
example

W=, —1)

and ¢(w) has the range R(q) ={ [ =—2,54=2 5}, then A1) and A.2)
are satisfied for the original problem. Now let M ={&. )| —a<t=2,
1 =» <3} be an interval of some partition. Then ¢ (M1 =6, such that M could
have a positive probability. 'Choosing on M the norm minimal vertex
v ={(&, n)|£ =—2, n =1} as value of 4. () does not satisfy A.2), since W'y =g,(n)
vields —1 <# <2 But if we choose the norm minimal element of the inter-
section of M and

Ky ={(&,n)|3u:—y=su<g)
={E & +nzu),
Le. g,(w)=(—2, —2), then A.2) is satisfied. In general, the analoguous way

(choosing the norm minimal element of the intersection of every interval and K\
yields a sequence satistying (7) too.

Fory,(x) = [ Q(x, 4,(w), b, (), ¢,(w))dP we can prove
g

Theorem 4. Provided (5), (6) and (7), lim v, (x) =y (x).

v—>00

Proof. Q(x, 4, (w), b, (w), ¢,(w)) is finite on £2 due to (7). From (5) and Th. 1 a)
follows

Q(x, 4,(®), b,(), ¢, (@) = Q(x, 4 (), b(w), g(w)) 8)

pointwise on £.

For any fixed x, @ and » we have

0 (%, 4,(0), b, (), 4,(0)) =7, (@) B (b, (@) — 4, (0) <),
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where B, is an optimal feasible basis out of W and G, :(w) consists of the corre-
sponding components of g, (w). With the Euclidean norm I ... ] follows from (6)

|Q(’T’ Av(w)' b,((()), qr(w))l g"[i,,(w) ” "B;—lll ”b,((})) 7‘41'(0))’\’"
=Blg. @[ {ibs (@) |+ |4, (@) [}

=BV mlg. (@)} {16, (@) | + |4, (@) - |*]o} (9)
B m]g (@) o {15 @) o + 4 (@) I, - %]}
=C(x ),

where f =max | B Y|
According to A.3) and Schwarz’ inequality | C(x, w)dP exists. From (8), (9)
2

and Lebesgue’s bounded convergence theorem follows the proposition. q.e.d.
From Theorem 4 we get the connection between solving the approximating

problems and tle original one as a special application of a more general theorem
proved in [3]:

Theorem 5. Assume that the set of optimal solutions of (1) is nonempty and
bounded. Then

a) inf {¢'x +y,(x) | veX} > inf {¢'x +p(x) | reX};

b) if x, solves min {¢’ v +y,(x)|x€X},v=1,2,..., then every convergent sub-
sequence of {x,|v =1, 2, -...} converges to a solution of (1).

The boundedness assumption in this theorem mnay not be omitted in general,
as was demonstrated in [3] by examples. However, in practical problems it is not
very restrictive to assume that the feasible set X" is bounded.

III. Error Bounds

Let (4,(w), b, (w), g, ()) be an integrable simple function such that A2)is
satistied. We want to have an error estimate for the objective function and hence
for the optimal value of the approximating problem min {¢'x +y,(x)| xe X},
which depends on the approximation of (4 (), b(@), g(w)) by (4,(w), b,(w),
¢,(w)), measured by the (generalized) Lynorni. For any vector valued function

g: 2 >R
we define
o) =)/ JlgtwFap, (10)
o
where || ... | is the Euclidean norm in R*. In this connection o (4) means that the

matrix 4 (w) is handled as an (m - m)-vector.
Theorem 6. There are constants «, v, 0, such that

lv(*) =, ()| < [a+y]xllo@ —g) +6,l0(b —b,) +]x]o(d —A4,)].
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Proof. For every convex or concave function

@:IR' > R! holds
l#(v) — o) SMax | (v —y) Vo (x)|; [(x =) V(v (11)
sMaxfVo ) -lx—y; Fom)|-|z—yl.

where Vg is the gradient (or some subgradient) of ¢. Using basic solutions
Theorem 1b) and (10), (11), we get

3

|40, (x, )| =0 (x, 4(w), b(®), g(@)) —Q(x, 4, (w), b, (@), 9, ()]
=[0(x 4 (w), bw), ¢(@)) =0 (x, 4 (@), blw), g, (@)
+1O(x 4 (), b(w), 4,(@) —Q(x, 4, (@), b, (w), 9. ()]

=13i(@) B [b() — 4 (@) %] —§,;(0) B [b(w) — 4 (o) ]
+130(@) B [b(0) — 4 (@) 2] — o () By [b, (@) — 4, (o) 3]
= Max| B b (w) — A () 5] - g (w) — g, (@)]

(12)

+1‘L{33‘||Bf"¢7”~(w) 116 (@) —b, (@) — [4 (@) — 4,(@)] x),

where {B;|i€,} and {B,|i€ ],} are those bases out of W, which for some veX
and weQ are primal feasible and dual feasible respectively.

From (12) and Schwarz’ inequality follows with

b(w)—A(w)r

Ib(@) ~4(w)z] €€
0 if g, (w)=0
avi(w)

le(@)] €€

[y (x) —y, () | ééf |40, (x, w)|dP

0 if b(w)—Awx=0
z(x, w):{

and 7, (w)=

_l " . — . J—
él‘,{gﬂB: z(x,w)|-0(b—-Ax)-o(g—q,) 1)
+Max | BV 7, (@) |- 0(g,) - (5 —b, 4+ (4, — A)x)

ieJ,
w€N

Hence, since o (g +4) < o(g) +o(h), for

« :Ma}x"Bi_lz(_\', w)|e(b)
LI
wef

y=1\,{8;XIIBTIZ(A: w)e(4)
wes)
9, = Max 1B Y 7;(w)lle (g.)

weN
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from (13) follows

b (¥) =y, ()| < e +y)xolg —q,)
+0,le(b—b) +xlo(d —A,)). qed.

It must be mentioned that determining the constants « and y leads in general
to a considerable amount of work, since it implies more or less the inversion of
all nonsingular (m x m)-submatrices of . This difficulty diminishes rapidly for
certain special cases. Determining 8, (or at least an upper bound) is not difficult,
since B 'r,(w) is a feasible wu-part of the set {(, @) | W' <gq, |qg| <1}, which is
bounded according to A.1).

(14)

Corollary 1. Assume simple recourse, i.e. I = (I, —1I). Then

v () —v, ()| < lo®) +lxlo(4)Te(g —g,) +0(g) (b —b,) +|xfo(d —4,)).

Proof. W = (I, —I) implies that for every basis B, out of WIB z(x, )| =
Jz(¥, w)|| and, by definition, |z(x, )| =<1. And for every i€ [, B 'r,(w) is a
feasible u-part of {(u, q)|W'n =g, lgl <1}, which for

Cfi
+ ;‘
9= (qA ) = ql’ may be written as
9 71
T

{, g q) | —qg Su=zq g B +g p=1).

Obviously every feasible u satisfies fuf| <1. Using these observations, we get for
the constants defined in the proof of Theorem 6

(b)
(4)
o(g,). q.ed.

IA

”
A
RS

7
6?

IA

For the general complete recourse problem we get out of the difficulties of
determining & and y, if ¢ (w) is constant, as is readily seen in Theorem 6. Moreover
we can weaken assumption A.3) to integrability instead of square integrability.
Defining a generalized L,-norm for vector valued functions as

(@ =[lglw)|dP, (13)
we get
Theorem 7. For constant g(w) =gq there is a constant & such that
o (x) —v, (2) [ <O [p(b—b,) +|x]p(d —A4,)].
Proof. From (12) we see that
[4Q(x, w)| = Max [B7 gl b () —b, (@) — [A (@) — 4, ()] x|
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and therefore
lp(¥) —w, ()| = Max [B7Y G| (m (b —b,) +]xu(d — 4,1,

For i€ J,, By Y §, is feasible in {1| W’'u <g}, which is bounded. g.ed.

Every one of the error estimates above becomes independent of v, if 4 (w)=4
and g(w) =g are constant, i.e. in this case we get uniform convergence of {v, (%)}
on X, if the simple functions chosen converge to the remaining random variables
with respect to the appropriate norm.

IV. Final Remarks

One might object, that this type of approximation is not practicable, since
the size of the approximating problems becomes very large. If for example in
(4, b,¢) 50 random variables with a joint probability distribution are involved,
and if we discretize in such a way that for every random variable 10 realizations
occur, then we should have in (4) 7 X 103 constraints, which cannot be handled.
However, in most of the practical problems there is a small number of random
variables &, ¢,, ..., {,, where often r <35, and (4, b, ¢q) depend on ¢, ..., ¢,. If this
dependence locks like

A@)y =Ag+A44,+ - +4,¢,
b(‘) :bo +b1t1 + - +b,t,
9O =g+ b+ -+,
then the discretization can be carried through with respect to the random vector ¢
yielding problems of a size which can be handled, to-day.
It is obvious, that all above mentioned error estimates then can be expressed
ing(t—4,) or u(t ~—#.)), where ¢, is a simple function.
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