OPERATIONS RESEARCH, Vol. 25, No. 1, January-February 1977

Sharp Bounds on the Value of Perfect Information

C. C. HUANG
Memorial University of Newfoundland, St. Johns, Newfoundland

I. VERTINSKY

International Institute of Management, Berlin

W. T. ZIEMBA

Unaversity of British Columbia, Vancouver, British Columbia

(Received original January 2, 1975; final, May 21, 1976)

We present sharp bounds on the value of perfect information for static
and dynamic simple recourse stochastic programming problems. The
bounds are sharper than the available bounds based on Jensen’s
inequality. The new bounds use some recent extensions of Jensen’s
upper bound and the Edmundson-Madansky lower bound on the
expectation of a concave function of several random variables.
Bounds are obtained for nonlinear return functions and linear and
strictly increasing concave utility functions for static and dynamic
problems. When the random variables are jointly dependent, the
Edmundson-Madansky type bound must be replaced by a less sharp
“feasible point”’ bound. Bounds that use constructs from mean-variance
analysis are also presented. With independent random variables
the calculation of the bounds generally involves several simple uni-
variate numerical integrations and the solution of several similar
nonlinear programs. These bounds may be made as sharp as de-
sired with increasing computational effort. The bounds are illu-
strated on a well-known problem in the literature and on a portfolio
selection problem.

LET f(r, «) be the net return in dollars received by the decision maker
when he makes decision « and a random variable is observed to be 7.
Assume that the decision must be made before knowledge of the actual
value of the random variable is received. Suppose that the decision maker
is an expected utility maximizer and that his utility function over wealth
is . An optimal decision may be found by solving max { Eu[f(r, )] | zeK},
where it is assumed that r is a random variable with domain B < ®°
(Euclidean S-space, ® denotes ®'), K C ®” and E, represents mathemati-
cal expectation with respect to r. Bars above random variables denote
their means.

If the decision maker has access to a market survey, clairvoyant, or
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other way of knowing in advance the actual value of the random variable
that will occur, then he may in effect choose an optimal decision condi-
tional on this information. His maximum expected utility is then
E, max {u[f(r, x)]|zeK}. The expected value of perfect information,
EVPI, is the value that equates the maximum attainable expected utility
with and without the perfect information. Hence EVPI is a solution of

max {Ewu[f(r, z)] | 2eK} = E,max {u[f(r, ) — EVPI]|zeK}

and represents the maximum amount an expected utility maximizer would
be willing to pay for perfect information concerning the random variable.

If we make the simplifying assumption that u is linear, ie., u(w) =
aw + b, a > 0, then

EVPI = E,max{f(r, z)|2zeK} — max{Ef(r, z)|zeK}. (1)

Avriel and Williams [1] have noted that the solution of (1) requires the
solution of the stochastic programs

Z, = max {E,f(r, z) | zeK} (2)
and

Z, = E, max {f(r, z) | zeK}. (3)

Since both of these problems are very difficult to solve, Avriel and Williams
suggest that one should obtain bounds on EVPI. They showed that EVPI
Z 0 as long as all the expected values and maxima in (2) and (3) exist
and are finite. We assume throughout the paper that all indicated expected
values and maxima exist and are finite. To obtain an upper bound on
EVPI, they provided an upper bound on Z, and a lower bound on Z, .
The upper bound is a consequence of

Jensen’s Inequality. If h(y) : Y — ® is a concave function defined on
the convex set ¥ C ®", then h(§) = E,h(y), and the following well-
known results summarized in

Levmma 1. Let v(z) = mazyep w(x, y) where w :C X D - ®,v:C — &,
C c ®", D C ®". Suppose that for each xeC the maximum is obtained for
some yo(x)eD.

(a) If w is a convex function of x for all fixed yeD and C is a convex set,
then v is a convex function of x.

(b) If w is a concave function of (z,y) on the convex set C X D, then v
s a concave function of x.

(¢) If w s a continuous function of (z, y), then v is a continuous function

of x.

Thus if ¢(r) = max {f(r, z) | zeK} and it is assumed that f is concave
in (r, z) on the convex set R X K, it follows from Lemma 1(b) and Jensen’s
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inequality that
EVPI < max {f(7, z) | xeK} — max {E,f(r, ) | zeK}
é f(ﬁ :2) - E,f(?", j)

where 4 is an optimal solution to max {f(7, z) | zeK}. Hence the bound
(4) may be computed by solving one nonlinear program and completing
one numerical integration.

In general, the bound (4) is not extremely sharp (some numerical re-
sults appear later) because it relies on a result that holds for all concave
functions and uses a feasible point argument. It is of interest to obtain
sharper upper bounds for Z, and sharper lower bounds for Z,. We now
develop such bounds by using some recent extensions of Jensen’s inequality
and the Edmundson-Madansky lower bound on the expectation of a con-
cave function of several random variables. The bounds yield sharp upper
and lower bounds to both Z, and Z, ; hence sharp upper and lower bounds
for EVPI are then available.

Assume that f is a continuous concave function of (r, ) on the convex
set R X K, where R = [a, b] € ®. The following theorem' is proved in
Huang, Ziemba and Ben-Tal [5].

(4)

TueorEMm 1. Suppose the interval [a, b] is subdivided at arbitrary points
do, -+, dn, where a = dy < dy <+ < dpy < dy = b. Let
¢ = f,’; o(t) dF (1), where ¢ 1s a continuous concave function of tela, b] and
t has distribution function F. Let J" and M" denote the n-fold generalized
Jensen and Edmundson-Madansky bounds, respectively.

(a) Let J" = Z:’Ll a@(ﬁl), M" = Z?zo L) (d@), n = 1, 2, -«« . Then

J'=2é =M, n=12 - (5)

where o; = [4i_, dF(t) > 0, B: = (Ya) [ii_, tdF(t), i = 1,---, n,
8 = ai[(Bs — dim1)/(di — dic1)] + aipal(diys — Bipr)/(diga — di)], ¢ =
0, -, n, and ap = a1 = 0. Suppose the partition Pryy corresponding o

k + 1 ds at least as fine as that corresponding to k, t.e., Py C Pyy1 fork =
1, -« ,n — 1. Then

(b) JrzeezJzézM 22 M,
and
(¢) liMyae J" = ¢ = limMpaw M"

(assuming that each subinterval becomes arbitrarily small as n — »).

1 See [5] for more details and motivation. The J™ bounds are valid on ®; however,
the M™ bounds are valid on ® only if lim.,., ¢ (¢)/¢ exists. It is convenient to assume
that R = [a, b]; the extension to infinite range is straightforward. Particular atten-
tion is paid in [5] to the d; chosen to be iterated partial means. The bounds are re-
versed when ¢ is convex.



Value of Perfect Information 131

THEOREM 2. Suppose f is a continuous concave function® of (v, ) on the
convex set B X K, where R = [a, b] and K is a compact set. Then

(a) max. Ly(f) = Z, = max. U,(f);
(b) Li(max,f) = Z, = U,(max, f);

(¢) max [0, Uy(max, f) — max, L;(f)] £ EVPI
< L;(max.f) — max, Ui(f);
(d) Assuming Py C Py, the bounds for I + 1 are at least as sharp as
those for 1, for all I, and

(e) limz., [Ujmax, f] — max, Li(f)]
= EVPI = limpo[Li[max, f] — max, U;(f)]

v

(assuming that each subinterval becomes arbitrarily small as | — ), where
L(f) = 2iaef(Bi, z), Ulf) =_Diodif (di z), Li(max.f) =
Dira max, f(8;, z), Uilmax.f] = Y.iod;max.f (di, 2), ai, Bs, an('i
ds are as defined @n Theorem 1, and all maxima are taken over the set K < ®”.

Proof. (a), (b), (¢), (d) follow directly from Lemma 1 and Theorem
1. For (e) it suffices to show that

limp,e Li(max, f) = Z, = limp,e Uy(max. f), (6)
and limyse max, L;(f) = Z, = limp, max, U;(f). (7)

By Lemma 1, max, f is a continuous concave function; hence (6) follows
immediately from Theorem lc. For any xzeK we have by Theorem 1c that

limpe Dot aif (B, ) = Ef(r, @) = liMpbw Ooie18:f (diy ). (8)

Suppose z* solves max {E,f(r, z) | zeK}; then by (8) limsw 2 i1 cif (Bs,
) = Z, = limpw Qi difi (diy, ¥). Thus (7) follows as long as z*
solves lim max, L;(f) and lim max, U,(f). This follows because lim
Ulf(2™)] = Z, = lim max, U,(f), and lim max, L;(f) = lim Li[f(£)] =
Ef(r, ) £ max, E,f(r,2) = Ef(r, z*) = lim L;[f(z®)].

1. THE DYNAMIC CASE WITH LINEAR UTILITY

We consider the problem in which the decision maker takes a sequence
of decisions {x,} in periods n = 1, --- , N. After each decision is taken, a
random variable is observed to be 7,. The net return from decisions {,}
and random realizations {r,} is assumed to be f(ry, -+, rv, 21, - -+ , Tx)
= f(+", ") using the notation ¥ = (ry, --- , ry) and 2" = (a1, - - - , 2w).
Initially we assume that the {r,} are independent and that the investor’s
utility function over f is linear. The no-information and perfect-

% Similar results may be obtained when f is a convex function of r for all fixed values

of zeK and is continuous on B X K. The bounds and the role of U; and L; are then
reversed.
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information problems are then Z," = max, ., Br, MaXe,ex, * -
MaXzyex, Efo(rNr xN): and ZPN = By - By maXeex, - ma'xfoan(rN:
z"), respectively. Hence EVPI = Z," — Z,". For expositional ease we
present the results and proofs of Theorems 3 and 4 for the case N = 2.
These results can easily be generalized to the case of arbitrary finite N
(see [4] for specific details).

THEOREM 3. Suppose f is a continuous concave function of (i*, z*), where
elar, by] X [as, ba], 2eK” = Ky X K» and K* is a compact set. Then
(a) La,; = max,, Ly, [max,, Li,(f)] = Z,
Z max,, Uy [maxe, Uy (f)] = Uiy,
(b) Ly, = Ly, [Ln, Imaxe2 f]] = Z,° = Uy[Uy, [maxe: fl] = U,y
and (c) max [0, Upy — Ln,) < EVPI £ Ly, — U,

(d) If I = 1, then the bounds in (c) corresponding to | are at least as sharp
as those corresponding to 1 assuming P, C Pj, and

(e) limz.,w [Up,z -— Ln,z] = EVPI = lim;m [Lp'l - U ‘z]

(assuming that each subinterval becomes arbitrarily small as Iy and l; — ).

(9

Proof. (a) Since f is continuous and concave in reefaz, bs], applying (5)
to E,,f yields Z,” < max,, E,, [max., Li,(f)], where L;,(f) is a continuous
concave function of (1, 2*). Thus by Lemma 1, max,, Li,(f) is continuous
and concave in (7, ;). Applying (5) to E,[max., L;,(f)] yields Z,* <
max,, L, [max,, L;,(f)]. An analogous proof verifies the right-hand side
of (a). '

(b) Lemma 1 indicates that max,: f is continuous and concave in (71, 72).
Thus applying (5) to E, [max.f] yields Z,° £ E,[Li;, [max.:f]],
where L, [max,z f] is continuous and concave in r;. Thus we can also apply
(5) to Ey[L;, [max.:f]] to obtain Z,” £ L;[Li, [max,s f]]. An analogous
proof verifies the right side of (b). Now (c¢), (d), and (e) follow directly
from (a), (b), and Theorem 1.

Since
max,, 2 i e maxs, Yk af(8, 87y o, @)
= MAKey el Doit1 i 2oit o f (81, B, 2, 22(Bi"))
and max,, D ikd max,, O 1208, (di, df, 2y, @)
= MAXey mah Dito 8 2520 857 (1, 47, @, @ (d1)),
each bound for Z,” may be computed by solving a single finite-dimension

nonlinear program. Under the assumptions of Theorem 3, as Iy, l; — o
it is clear that

(10)

(11)
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THEOREM 4.
max,, ¥,, max,, E., (e, ) = MAXz, 250 Brtf (21, T2(11), 7).

Remark 1. Theorem 3 indicates that both of the bounds in (9) may be
computed via the large nonlinear programs (10) and (11). This is a gen-
eralization of the argument used to develop a large linear program that is
equivalent to a two-stage stochastic program when the random variables
have discrete distributions (see, e.g., Dantzig and Madansky [2]). Whether
or not the solution of such a large nonlinear program is preferable to a
solution via dynamic programming is largely dependent on the cardi-
nality of 2", in addition to the influence of the K,, f and the grid sizes.

Remark 2. Rockafellar and Wets [10] have shown that max..) Ef(r, x)
= K, max,f(r, ) under very general conditions that are much weaker
than those assumed here. Their result can be used to provide an alterna-
tive proof of Theorem 4. The proof using the bounding approach has the
advantage of directly indicating the existence of equivalent finite-dimen-
sion nonlinear programs to the upper and lower bounds.

When the {r.} are dependent, it is not possible to apply directly the
Edmundson-Madansky type bound because although such bounds exist
(see Madansky [6]), there is no apparent simple way to calculate them.
However, bounds similar to the Avriel-Williams bound (4) may be de-
veloped in this case. Ziemba and Butterworth [12] have presented such
bounds for the two-period case; the following is a generalization to N-per-
iods. We consider then the no-information and perfect-information prob-
lems

Z," = maxeex, Er, -+ - MaXeyery Erypv-1f (1", zV), (12)

and Z," = E,~ max.~vegn f(r", V), respectively. Now EVPI = Z," — Z,".

THEOREM 5. Suppose f is a concave function of (r", z¥)eR" X K", where
RY = R, X --- X Ry, each R, is a convex subset of ®*", K" = K; X -+ X
Ky, and each K, is a convex subset of ®™. Then

(a) 0 £ EVPI £ f(7, ) — Ewf(x", &), (13)

where £" solves max,v g f(7", 2V).
(b) Suppose, in addition, that each (7, | v"~') is a convex (concave) func-
tion of r" ™ and f is a non-increasing (non-decreasing) function of r". Then

0 < EVPI £ f(7, -+, (x| 7 1), &) — Ewnf(r", &%), (14)
where & solves max.v ey (7, - -+, (Fy |7 0), 2V).

Proof. (a) Under the assumptions all maxima and expectations exist;
thus it is easy to show that EVPI = 0. Since max {f(+", zV) | "eK"}
is concave in ", it follows by Jensen’s inequality that EVPI <
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{max f(7", ") | «"eK"} — Z," and EVPI £ f(#, &) — Ex~f(", %),
since £" is feasible for (12).

(b) The proof uses the following lemma, whose proof is found in Man-
gasarian [8].

Lemma 2. Letv(z) = ulgu(z), -+, qi(x)], wherev : C > R, u : ®" — ®,
gi:C—®,¢=1,---,I, and C C R" 7s a conver sel. Suppose u is concave
and non-increasing (non-decreasing) and each q; vs convex (concave). Then v
18 concave.

Using the conditional form of Jensen’s inequality yields EVPI <
Ew-1 maxy flr 7, (Fx |77, 2¥] — Z,". By Lemmas 1 and 2 it follows
that ¢(+" ") = max {f[" 7, (Fx | "), 2] | 27 K"} is a concave function.
Hence by Jensen’s inequality EVPI < E~-: max.v f[r" -, (Fy_a | 0),
(7w | Py, ™0, %] — Z,Y. Continuing inductively yields EVPI <
max {f{ﬁ; R fN(fN_1)7 ZN} l INEKN} - ZnN = f{fh Tt fN(FN_l)) iN} -
Exf(r", &) since 2" is feasible for (12).

Remark 3. To apply this type of bound it is necessary to assume that f
is concave in V. A similar lower bound does not exist in the convex case.

In general, 7, % 7,(F" ). Equality is obtained if each 7,(+"™") is linear,
such as when " has a multivariate normal distribution; the bounds in (a) and
(b) are then equivalent. If the assumptions of (b) are satisfied, the tightest
upper bound will be the minimum of (13) and (14) since neither dominates
for general concave f. However, if ° = &, then (13) (respectively (14))
is the sharper bound when each (7, | r"™") is concave (convex) and f is
non-decreasing (non-increasing).

To calculate this bound it is necessary to solve one nonlinear program
and to compute one numerical integration.

2. THE STATIC CASE WITH SEVERAL RANDOM VARIABLES AND
LINEAR UTILITY

In the static case with several random variables the no-information and
perfect-information problems may be written as

_ Z,° = max.x E.of (r°, 2) (15)
and Z,° = E,e maxeex f(r°, @) (16)
respectively, where r® = (r, - - - , 7¢), the r, have independent distributions

on R, = [a, by), zeK C &7, and K is a compact set. Suppose that f is
continuous and concave on R X K, where B = R; X -+ X Rq. Clearly,
(15) and (16) are merely special cases of the dynamic problems con-
sidered in Section 1. Hence one has

TueoreEMm 6. Under the assumptions stated above
(a’) Ln.m = ZnQ = Un.m;
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(b) Lypwmz ZPQ 2z Upm;
(e) max [0, Upm — Upw]l £ EVPI £ Lpyw — Unm

(d) If M = 7, then the bounds in (c) corresponding to 1 are at least
as sharp as those corresponding to i for all M and 1, assuming Py
C Py and

(e) limm-wo (Up,m —_— Ln,m) = E’VPI = limm-»eo (Lp,'m - Un,m),

(assuming that each subinterval becomes arbitrarily small as each

Mg —> @),

where  Lym = maXy L, +++ Ly (f)

= MaXeex Do oty 0 Dtom alyf(BLy, o, B, 2),
Unym = max, Up, -+ Ung(f)

= MAXeex D rim0 85, <0 D rdeg08f (diy, -+, dSy, @),
Lpm = Ly, -+ Ln, (max. f)

= D0 200 (ri af,) maXeac f(BL, -, B, @),
Upm= Up, -+ Uny (max,f)

= 7,1=0 te Z?§=o (71'1?=1 5Iick) maXaex f (dzl‘n ttt, dzgq, z),

and m = (my, « -+, mq).

The bounds in Theorem 6 may be illustrated on the following problem
taken from Mangasarian [7]. Let f(z, r) = ra’ + ma, K =
{(21,22) |0 = 2, £ 10,0 = z, = 5}, where r, and 7, have uniform distribu-

tions on [—14, 15] and [0, 1], respectively. One then has the bounds’ 0 <
EVPI = 31.25, 5.65 = EVPI = 14.07, 898 =< EVPI = 12.89, 10.84
= FEVPI £ 1260, for I = 0, 1, 2, 3, respectively, where ! = 0 uses the
Jensen and Edmundson-Madansky bounds and I = 1, 2, 3 uses the gen-
eralized Jensen and Edmundson-Madansky bounds. Each m; = 2 and
the partition at I + 1 is obtained by subdividing each subinterval at [
by its partial mean.

Remark 4. The bounds in Theorems 3 and 6 may be casily generalized
to the case where there are multiple random variables and multiple periods.
The complexity of the resulting expression in the general case is, however,
extremely unwieldly and is perhaps of limited practical importance. Hence
it is omitted.

¥ Since f is convex in r for all feasible z, the convexity of ¢(r) = maxsex f(z, r)

follows from Lemma la. The bounds in Theorem 6 then become max [0, Lp»n — Un,ml
= EVPI £ Upm — Lum.
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3. THE STATIC CASE WITH CONCAVE UTILITY

If the decision maker’s utility function v is nonlinear, then the expected
value of perfect information is a solution of

E, max {u[f(r, x) — EVPI]| zeK} = max {Eulf(r, z)] | zeK}. (17)

The solution to (17) is known (see Marschak and Radner [9]) to be unique
(assuming all indicated expected values and maxima exist) if » is strictly
increasing. Ziemba and Butterworth [12] have developed the following
bounds on EVPI using Jensen’s inequality and a feasible point argument.

THEOREM 7. Suppose that w is strictly increasing and concave on & and f
is concave on the convex set R X K < ®° X ®". Then 0 £ EVPI = f(7,
&) — wMEulf(r, £)]}, where £ solves mazx {f(7, ¢) | xeK} and w ' s the
tnverse function of u.

This bound may be illustrated on the following portfolio selection prob-
lem. Suppose u(w) = w', f(r, ) = r@y + roze, K = { (21, @) | 21 + 22 = 1,
2y = 0, 2, = 0} and 7, and 7, have uniform distributions on [1, 3] and [2, 3],
respectively. Now 7 = 2, 7, = 2.5, £ = (0, 1), f(7, £) = 2.5, Euf(r, x)
= 1.5784, and u (1. 5784) = 2.4910. Thus 0 < EVPI < 0.0090.

Unfortunately, this is the only bound using Jensen or Edmundson-
Madansky type inequalities that enables us to obtain a simple explicit
expression for EVPI." However, it is possible to develop bounds using
constructs from mean-variance portfolio analysis.

TaEOREM 8. Suppose that

(1) u s strictly increasing and concave on ®;

(ii) «* = 2*(r) and & solve maz {f(r, ) | zeK} and maz {Eulf(r, z)]|zeK},
respectively, where reR C ®°; and

(iii) f(r, z*) and f(r, £) have distributions belonging to the same family
with two pammeters that are independent functions of mean and variance,
i.e., i f(r, &*) ~ G(y ay, b1) and f(r, ﬁ) ~ H(z :ay,by),then G(y) = H(z)
whenevev" (y — a)bs’ = (2 — as)/bs , Where the a; are finite and the b; are
positive and finite. Then

(a) EVPI = (resp., <) Elf(r, 2*) — f(r, £)] iff var f(r, 2*) (18)

=< (resp., =) var f(r, £),

and

(b) a risk-averse deciston maker will never have a lower value of EVPI
than a risk-neutral decision maker iff var f(r, z*) £ var f(r, £).

4 Specifically, when one of the generalized bounds is applied to the left side of
(17), one has an expression of the form Zdi max {u[f(8:, x)] | zeK} = or =
max {Ewu[f(r, z)] | zeK}. Hence inversion of u is not possible except in the unlikely
case when the solution to max {u[f(8s, )] | zeK} is independent of s.
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Proof. (a) By definition f(r, 2*) = max {f(r, ) | 2zeK} and Eulf(r, £)] =
max {Eulf(r, 2)] | zeK}. Since strictly increasing v implies E, maxu[f(r, )
— EVPI] = Eu[max, f(r,z) — EVPI], (17) may be written as

Eulf(r, 2*) — EVPI] = Eulf(r, £)]
= Balf(r, z*) — {f(r, &) — f(r, £)}].
Let g(r) = f(r, *) — E,[f(r, «*) — f(r, £)]. Since g(r) and f(r, £) have
distributions belonging to the same family described by two parameters

that are independent functions of mean and variance with equal means,
it is well known (see, e.g., Hanoch and Levy [3]) that

Eaulg(r)] = (resp., =) Eaulf(r, £)] iff var g(r)
< (resp., =).var f(r, £) (19)
for all non-decreasing concave u. Therefore,
Eaulf(r, z*) — Blf(r, ") — f(r, ))]] Z (resp., <) Bauf(r, &)
= Eulf(r, z*) — EVPI] iff var g(r) = (resp., <) var f(r, £).

Thus EVPI = (resp., <) Elf(r, 2*) — f(r, #)] iff var g(r) < (resp., =)
var f(r, £). Hence the result follows because var ¢g(r) = var f(r, z*).

(b) Since EVPI = E,[f(r, «*) — f(r, #)] iff var f(r, *) < var f(r, £)
and maxgx Ef(r, ) = Ef(r, &), it follows that EVPI = Ef(r, z*) —
maXzex Bof (r, ) = B, maXeex f(7, ) — maxzex E.f(r, z).

Remark 6. The results hold for any distribution that has two parameters
that are independent functions of mean and variance such as the normal,
or the uniform and two-point equally likely distributions (when S = 1).
The lognormal is a distribution having two parameters that are not in-
dependent functions of mean and variance. The results may be extended
slightly to apply to stable variates whose mean exists. See Ziemba [11]
for an extension of the result in (19) to stable variates that yields (18),
letting dispersion replace variance.

To compute the bound in (a), it is necessary to solve one nonlinear
program and one stochastic program and to compute a numerical integra-
tion.

4. THE DYNAMIC CASE WITH CONCAVE UTILITY

We consider the problem outlined in Section 1 under the assumption
that the decision maker has a strictly increasing concave utility function »

over f(r", ). Then EVPI is defined by
E.v max,v u[f(r", 2¥) — EVPI]
= MaXs,ex, Lry -+ ° MaXayery ETNI'"“‘“U(TN: zN)]

(20)

The natural generalization of Theorems 5 and 7 is
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TaeorEM 9. Suppose (a)

(1) u 1s strictly increasing and concave on ® and

(ii) f is concave on the convex set (r", z")eR" X K", RY < ®", and
K'=Ki X - - XKyC®™"X -+ X ®"™.Then 0 £ EVPI < f(7",2")
— w [Exulf(r¥, 2V)}], where £” solves max [f(7", 2") | z"eK"].

(b) Suppose in addition that each (7, |r" ™) is a convex (concave) func-
tion of "' and that f is a non-increasing (non-decreasing) function of r".
Then 0 = < EVPI < f(f1, «-+ , in(F ), &v) — w ' [Evuf(r”, Z)}], where

¥ solves maz [f(F, -+, (Fy | F e D) ), xN}]-

Proof. (a) Under the assumptions, h(r", 2", EVPI) = ulf(", 2")
— EVPI] is a concave function of #" for given z"eK" and EVPI. Hence
applying Jensen’s inequality to (20) yields

max,veey ulf(7, V) — EVPI]
= max,, e, By o MaXeyexy Bogv-u[f(r”, V)] (21)

Since u is strictly increasing, an optimal solution to max.vexw [f(7", zV)
— EVPI] is an optimal solution to the LHS of (21). This yields the upper
bound since £V is feasible for the RHS of (21). It is easy to show that
EVPI =z 0.

(b) The proof is essentially the same as the proof of Theorem 5b, using
N sequential applications of Jensen’s inequality to the LHS of (21) and
the inversion operation. Remark 1 applies here as well.

It is also possible to generalize Theorem 8 to the dynamic case.

TuEorREM 10. Suppose that

(1) w s strictly increasing and concave on ®;

(i) 2 = 20" and & = (&, (), -+, E0TY))  solve
maz {f(r", V) | 2" eK"} and mazs,ex, Er, - -+ MaXeyery Ery | v-1u[f(r", 2V)],
respectively, where r" R < & X -+ X ®™Y; and

(iii) f(", &) and f(+", V) have distributions belonging to the same
family with two parameters that are independent functions of mean and
variance, i.e., if f(r", ") ~ G(y : a, b1) and FiCal Al ) ~ H(z:as b),
then G(y) = H(z) whenever (y — al)/bl = (2 — ag)/bz , where the a; are
finite and the b; are positive and finite. Then

(a) EVPI z (resp., <) Ef(r", 2™
— f(~, ") iff var f(rV, 2"*) < (resp., Z) var (", &");

(b) A risk-averse decision maker will never have a lower value of EVPI
than a risk-neutral decision maker iff var f(+", £*) < var f(+", £").

Proof. The proof is exactly the same as Theorem 8 if we let f(r, ™)
f(rN, xN* = {maxf(rN, xN) l xNGKN}) E,-’Ltf(?, ﬁ) = ETNu’[f(TN) AN)]
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maXz, ek, E"l © 0 MaXeyeRy E"NITN-lu[f(rN; xN)]y and g("’) g(TN) =

f(rN7 xN*) - ETN[f(TN; xN*) - f("'N7 j"N)]'

Remark 6. It is not necessary in Theorem 10 to assume that the »" are
independent nor that the S, = 1. Remark 5 also applies to this result.
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