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BOUNDS FOR TWO-STAGE STOCHASTIC PROGRAMg
WITH FIXED RECOURSE

N. C. P. EDIRISINGHE ano W.T. ZIEMBA

This paper develops upper and lower bounds on two-stage stochastic linear programs us;
limited moment information. The case considered s when both the right-hand side as well 3¢
the objective coethicients of the second stage problem are random. Random variableg are
allowed to have arbitrary multivariate probability distributions with bounded support. Firgt
upper and lower bounds are obtained using tirst and cross moments, from which we develol;
bounds using only first moments. The bounds are shown 10 solve the respective genery)
moment prohlems.

ing

1. Introduction. A stochastic program arises when some or all of the Probley
parameters of a deterministic mathematical program are subject to random Variatig
These problems often involve optimizing an expectation functional of multivariak'
random variables which may be stochastically dependent. Multidimensionat Numeyi
cal integration as a computational strategy is prohibitively expensive. This is ot onl
because it is at the outer limits of computer technology, but also because j iy
become necessary to evaluate the expectation functional as many times as.would
necessary in an iterative search of an optimal set of decisions for the prablep
hand. Inevitably, therefore, one is forced to look for approximations, such as upper
and lower bounds to the stochastic program. A possible solution strategy i
compute bounds for the expectation functional which can eliminate the need f
multidimensional numerical integration and then to use these bounding functions i
the inner optimization. This paper is a contribution in this direction.

We are concerned with the two-stage stochastic linear programming problem wit
fixed recourse, see, for instance, Kall (1976) and Wets (1982). The model is

() Z* = min{c'x + E [é(x.£.n)]: Ax = b, x > 0}
where
(2) d(x.E.m) = min{g(n)y: Wy = h(£) - T(&)x. v > 0},

v

with primes ('} denoting transposition of vectors and E,_ denoting mathemaict
expectation with respect to the joint random vector w = (£, n). The domain oflhf
random vector £ is denoted by = € WA and that of n by ©® < R*. The joint domah
of the random (K + L )-vector w is denoted by €. The recourse problem (2) has foed
recourse because the (m, X i1,)-matrix W is deterministic. A is a fixed (m, xn}
matrix and ¢ is a fixed vector in "' T is a (m, X n,)-dimensional stochastic maim
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: s a n,-dimensional random vector. Define the set
wd 45577
X' ={xreR" Ax=b,x> 0}.
o
(he first stage decistons « induced by the sccond stage recourse problem (2) (for
t sure satisfaction of its constraints) be

almost
¥ X' = {xeM 3y > 05t Wy = (&) - T(&)x, Ve =),
The s€! of feasible solutions of the stochastic program (1)-(2) is
6) X=X"nX"
Assume that:
an x#9,

(A (me R 7w W < qn) n € O) @,
(A q(n) =4, + On,
h(g) = hy + H'S’
T@&) =T, + L\ T 4.
where the vectors qq. h, and matrices Q, H,T, are all fixed and defined with
appropriate dimensions,

a9 Q=Z=x0,and

(A5) E and © are convex, compact subsets of H* and W ¢, respectively.

Assumption (Al) ensures that the stochastic program (1)-(2) is feasible with
probability one while (A2) ensures that the recourse problem (2) is never unbounded.
Furthermore, due to (A3), the recourse function ¢(x, £, ) is a convex-concave saddle
function in (£, 1) for fixed x € X. Moreover, from the linear programming theory,
¢(x,£,1) 1s polyhedral in (£. 1) for fixed v € X, thus ensuring continuity of ¢ for
fired x € X. The convexity assumption in (A3) is not restrictive for, it not, one could
work with the convex hulls of the domains. In particular, consider these convex hulls
a being generated by a finite set of extreme points, which we shall follow subse-
quently in order to make the exposition easy.

Properties of the program (1)-(2) are well known, see Wets (1974). For example,
the set X is convex. Moreover., since integration with respect to a probability measure
preserves order, convexity of ¢ in x implies that the deterministic equivalent
program of (1)-(2) is a convex program. However, direct application of convex
programming algorithms is difficult (except, for example, when W has special struc-
ture such as simple recourse) due to the multidimensional integration required for
evaluating (1), of which the integrand is the optimization in (2). Such procedures
beco.me even more prohibitive computationally as one would need to evaluate
Krﬂdleqts as well. A standard approach to alleviate this difficulty is to develop
approximations.

This
(1-(2)
plished
function
stich pro
and fow,

Paper is concerned with determining tight upper and lower approximations to
using limited moment information on the random vector w. This is accom-
by developing upper and lower bounds on the expectation of the recourse
¥x, £, m) for a fixed first stage decision v € X. The literature on bounds for
blems is extremely sparse. Frauendorfer (1988b, c. d. 1989) obtained upper
er bounds for the expectation of the convex-concave recourse function. These
Sim:n: have been derived when domair_ls are either multid?mensiongl r.ecta_ngles or
detemfs' In the former case, approximating elxtremal dIS'Cl’C-IC d|str}but|0ps are
. ranl(;led on vertices of the domains, and thus, 1s-exponenual in the dlmensngns of

Om vectors, while in the latter case, bounding computations can be afforded




294 N. C. P. EDIRISINGEHE AND W, T, ZIEMBA

within a quadratic amount of function evaluations. In §2. we extend the ideag
determine tight upper and lower bounds using only first and cross moments of‘[ﬁ
random vector w, with no independence assumption and requiring only (hy, (he
random vectors have bounded domains. more precisely. polytopes.

Using these bounds. in §3. we obtain tight upper and lower bounds using opyy fire
moments and without any independence assumption. These bounds may be View:ed _\i'
a generalization of the known bounds in the pure convex case. that is, the Specia| Ca:
when randomness is only present in /1 and T of (2). Bounding techniques fo ‘Hl
special case has been developed by, for example. Birge and Wets (1986), Dula (]()(p;
Fravendorfer (1988a), and Gassmann and Ziemba (1986). using limited mOmQ\n{
information.

In §4. we apply these bounding strategics to the stochastic linear program (M-
to obtain finite mathematical programming formulations to compute the bounds In
particular. we obtain upper and lower bounds which are convex polyhedral in the firg
stage decisions v so that the bounding computations do not require any More
sophistication than solving linear programs.

Tightness of bounds is discussed in the context of generalized moment problep
Specifically. we investigate if the bounds solve the duatl of the moment problem. gy
this purpose. the required duality relationships are summarized in the remainder o
this section. Notation is introduced as it beecomes necessary.

1.1. Bounds using moment problems. We define the generalized moment prop.
lem without any reference to a stochastic program and subsequently duality relation.
ships are specified.

Consider a set of finite measurable functions f(w): R" - R, fori=1,... . m+1
with @ being a random vector mapping the measurable space (€2, #) to R" and 4
the Borel-sigma field of the events in Q. Suppose the (generalized ) moments E ()
for + = 1, ..., m are given, where Em[-] denotes mathematical expectation with
respect to the true probability measure on (€2, ). For simplicity, £ [ f,(w)] is written

as Lf. We are concerned with upper bounds on Ef, ,,. Given the generalized °

moments Ef ... .. Ef,,. we say, a tight upper bound is determined for £f,, ., when
one solves the following moment problem (GMP), see Kemperman (1968):

Ef..i < V(GMP) =

sup
re.#

ffm“(cu) P(dw)
Q

st f“f,(w) P(dw) = Ef .

where .2 is the set of all probability measures on 2. The dual formulation of 6) s
the semi-infinite linear program (SIP):

m

inf v, + Y (Ef)y,

=1

V(SIP) :=

(7

"

stoye+ L flw)y, = f, (@),

=1

Yo € (.

While the weak duality for (6) and (7) is immediate. i.e.. V(GMP) < V(SIP), to ensure

strong duality, certain mild conditions are required, in general.
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If

foi= lo.... m. are continuous.,
i) Qs compact, and

oy there exisis a probabiliny measure which acliieves the given maomenits Ef,s on ().

U GMPY is soltable and VIGMP) = VISIP).

Tl

For a proof of the above results, see Kali (1987) or Kemperman (1968). The issue

ong duality for semi-infinite linear programs and the associated dual problems
¢ been addressed in a general sensc by Glashoft and Gustafson (1983) who also

dgvelop this theory from first principles.

s assumed that the informznion( Qn limited moments of the random vector w is
quch that there exists a true pl‘n)hghlllty measure t_hat achicves these. Morcover. for
he stochastic program dgﬁncd before. together \.Nllh the assumptions hsted therein.
the sufficient condltlon:% in Theorem 1.} are satisfied. Consequently. we use strong
Juality for the underlying moment problem and its semi-infinite dual. without any
Hmbiguity-

Of str

3. Bounds for the expectation of the recourse function. Consider the stochastic
program (1)-(2) under Assumptions (A1)-(AS5). The recourse function d(x. &.7) is a
onvex-concave saddle function in (£,9) = o for fixed v e X. Let us fix the

following notation with regard to domains of the random vectors: = is a polytope with
/

exireme POINts T n' and © is a polytope with extreme points o ¢’ The
fit moments of & and 7. respectively. denoted by £ and 7. as well as the cross
moments E[&,m,] (for k = 1..... K:l=1..... L), denoted by m,,. are all assumed

1o exist and be finite. The expectation of the recourse function @(x. & n). for fixed
(€ X, is denoted by ¢(x).

we are concerned with developing upper and lower bounds to d(x) using himited
moment information of the random vector w and without making any indecpendence
assumption with regard to the random vector w. We take an approach similar to that
used by Birge and Wets (1986, §5) in their work in the purc convex casc. The basic
idea 1s to consider each realization of the random vector as a convex combination of
the extreme points of the domain. Thus, by the convexity of =. for given & € = there
eust scalars A(£) that satisfy

!
() Yua () = ¢

r=1 r=1

Similarly, by the convexity of @. for given n € O there exist scalars p(n) satistying

!

f
O Yewu(n) =, Yo m) =1,

i=1 =1

Then by the saddle property of ¢(x....).

J

f
Youma(a 0y <d(En) < L A(E)d(v ')

=1 r=1

(1)

forall (§.9) e = x 0O = (.

Pon integration of (10), with respect to the true probability measure. bounding
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inequalities for ¢{x) are

7 /
(11) L E[n(me(x.&.0n] < 8(x) < ¥ E[A(E)d(x.u )]
1=1 =1
The lower and upper bounds in (11) are difficult to compute since the scalar
are to be determined according to (8) and (9), respectively, and moreove
terms involving these scalars and nonlinear functional forms of ¢ n
integrated with respect to the true probability measure. To alleviate this di
use a two-step procedure in the next section. First, each of the functions
and ¢(x,u’,n) are linearized at some arbitrary points in the respective
similar in spirit to what was done in Frauendorfer (1988c). Bounds are th
mined by considering the resulting inequalities in expectation, an idea origi
to Birge and Wets (1986). Since the bounds from this procedure would depe
chosen linearizations, in the second step, we optimize over all possible line
to tighten the bounds. Finally, we will show that thesc bounds solve the
generalized moment problems, hence, the bounds are tight.

S A angd X
T> Prodyg
eed to bt
fhiculty, W
&( X, ¢ t')
domaipg
cn deler\
Nally gy,
nd on th,
anization
Tespective

2.1. Tight bounds using first and cross moments. In the ensuing developmen
the first stage decision x (€ X) is fixed. First, considering the lower bounding‘
inequality in (11), linearize each of the convex functions d(x, £, ¢7), being convey
£ € E, at some known point .§' € E, i.e., consider the supporting hyperplane {(7¢)
+ oo, forﬂﬁxed coefficients 7/ € R* and ¢’ € R, to the epigraph of ¢(x, & v/)y
(&', ¢(x, €', v")). Dependence of the latier coefficients on x is suppressed for simplic.
ity. The coefficient vector 7 is a subgradient of the recourse function at ¢ = £/ apg
may be interpreted as an optimal dual solution of the linear program:

(12) é(x & 0) = min{q(e') y: Wy = n(£) = T(£)x.y = 0.

Similarly, linearize each of the concave functions &(x,u',m) in the upper bounding
inequality in (11), being concave in 1 € 0, at some known point 7' € @ to obtain the
linear support {a', ) + B'. a' € R isa subgradient of ¢(x,u', ) at n = 7' ands
interpreted as a primal solution of the finear program:

(13) d(x. ' 9 = m‘;n{q(ﬁ')’y; Wy = h(u') = T(u')x.y > 0).
Therefore,

(14) {a'n) +B'> ¢(x.u'.m). ¥YneO®andi=1, . I,
(15) (7€) + o' <d(x.£.07), Yéee=zZandj=1,...,J.

Substituting (14)-(15) in (11), the resulting lower and upper bounds to the expect
tion functional are

7 {
(16) Y E[n/(n)ﬁr’.g) + n,(n)o’] <d(x) < LE[A(E)a', ) +A,(§)ﬁ]

y=1 i=1

where A’s and u’s satisfy (8) and (9), respectively.
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te the K th element of the K-vector «' by u} and that of 7/ by ;. Also, the
Den?nenl of the L-vector ¢’ is denoted by ¢/ and that of a' by a;. Since = is
fth Cl'ed for each component random variable £, k = 1,... K. there exist (finite)
mpdan‘d upper bounds denoted by 4,, and 4,,, respectively. Similarly. those tor
IO“:;onemS . l= 1 L. are denoted by a,, and a,,. respectively.
ol

pROPOSITION 2.1

!
d(x) <max Y a1y + 8'p,

e =1

/
s.t. Yot = my, Yk =1,..., K, viI=

=1

(17)

ap, <t; <d,p,, Vi

Proor.  From every feasible solution A(£) of (8), a feasible solution of (17) can be
constructed by setting

po=E[ALO] and 1) = E[A(&)n)]

forall i=1,....7 and [ =1,.._, L. Moreover, under this construction, the upper
bound in (16) develops to be the objective function in (17). Hence, the right-hand side

upper bound in (16) is obtained as a feasible point lower bound o the maximization
in(17). o

In an analogous manner, the following lower bound is derived.

ProrosiTion 2.2.

J
$()‘);min Z<7r‘,l’)+cr/pl

top

s.t. Zt'/l,{:m“, Yk=1,..K;

(18) ]
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. . . . - o Likewi ai at linearization of &(\.£.1) for each ; such
The bounds in (17) and (18) require solution of linear programs. Alth (izations. Likewise. we obtain that linearizatic &Cr &7 for each § suc

Ough th 1 jpea

. = . . in (2 s the largest of all possible linearizations. For this
are vahd upper and lower bounds to ¢( 1) using only first and cross Momen, N q the loweT bound in (20) becomeﬂ & P r '
i anv i ae ; ; , S ang tha t. first note the following result.
without any independence assumption. even tighter bounds may be Ohla!ne(j. devdopmen .
follows. Morcover, these tightened bounds also serve to develop the pey DOWhJK 225 Let p € & where € is as defined in (21). Then.
upper and lower bounds under the lincarization procedure. 0l LeMMA =
Proposimion 2.3, N vi=l..... I: Zp,, =0 mplies Z"'p,/ = (.
1 !
(19) d(v) < max Y(la' iy + B)p,,
=/ [
pel Li'p,
Yo, >0 inplies 24" € 0.
llIl(I ' ey
20 S(v) > min 'y o)y . N o
(20} d(x) }r,nEIL,"Z,,Hw >+ al)p, by Vil Yoo, =0 implies Y u p,, = 0.
1 i
where the feasible set € is the polyiope defined by 5
L, >0 implies Z’ e =
(21) 7= {pE.‘H' /: Z(u’,l")p”=(é—lﬁ). Yuieip, = m,,, ' Y
! o proor. For p € €. since p, is nonnegative, Yop, =10 .(l'or some i) implies
_ all j, and thus, ¥ i'p =0 for such ;. If © p,, # 0 for some /. then
,,,‘I>Uf01’d ] APy Py
Vh =1...., Kil=1, ... L. Zp”:l. p,,z()}4
o {
o Eill _ Zl_, P, ) — Zl./‘,
Proor.  For any feasible solution ME) of (8) and uln) of (9). define Yip, ; Lp, ; !

b= b[AI(H#'( 77)]< where v, = p, /¥ p, . Since Y,v, = 1and v, 2z 0forall j, Y,o'v, & O proving the first

For this A£) and uin). defining p and 1], i=1.. . Pand 1 =1,.. L. as in the sertion. The second assertion follows similarly. o

proof of Proposition 2.1, observe that Z(I'//)” =1, X,/)” = p,. and »,, 2 0 holl TheOReM 2.5, The best-linearization upper bound from (19) is

Substituting these in the upper bound in (17). the upper bound in (19) foltows

Similarly. one obtains the lower bound in Q2m. o bu(x) = max ZP,/Q"( Lt h(p)

CoOrROLLARY 2.4, If the domains = and O are muldiidimensional rectangles of the 1EE

form Z = X3 Lagd Jand @ = X7_lag. an ). then the upper and lower bounds {22)

i (7Y and (U8) coincide with those in (19) and 20, respeciirely. S.L Z"'P,, =1'(p) Zﬂ,,‘ r=1l.... l.
! !

Proor.  Considering the upper bound in (19), from uny of its feasible solutions. s
fca.sihl.c solutimjr‘or the linear p.rogrum.in (17) may be cons[ruc(e_d having lhe. samf where ¢ s defined in (21).
objective value, ie.. the bound in (19) is never worse than that in (17). Consider a
teasible solution (/. PV of (1T7) Sinee @ s a muttidimensional interval, 1'/p, €8 Prook.
for p, # 0. Thus. for each i. there exist convex combinations 6,, such that /"=
(X076, )p,. The construction p, = p8,, results in a feasible solution to (19), implyin

The best-linearization upper bound from (19) is obtained from

that the upper bound in (17) is as good as that in (19), hence the result. The lower (@) inf SUDl{Z(ﬂ"" tB)p, a'n + B 2 d(x.u'in).n €O, V’} .
bounding result follows analogously. o “Bloecl,

If the supports are multidimensional intervals. due (o Corollary 2.4, we ma . .
continue the ensuing discussion with the bounds in (17) and (18). However, we shal In 23), transposes have been removed for simplicity. Observe that (23) is cquiva-
keep the discussion general by requiring only that the supports = and @ be comet lent to;

polyhedral sets. Consequently, we shall be concerned with the bounds given in (1

and (20). The latter upper and lower bounds. respectively, depend on the finearizit o1 }

) . ; . S s - 2 inf{ Y (a'v Vo ral ! L' n).n e, Vi
points which determine the supporting hyperplanes in (14) and (15). Therefore. 1t ® ) 52[’( (t”g{ (a’c"+ B)p, o + B> $(x.u'im).m
of interest to determine those "ti= 1. 1. that lead to the hesr linearizatioh '

: . . o for ¢
upper bound. That is, one needs 1o determine that linearization of q‘)(,\‘.u',ﬂ)_f‘ i Forags . . ) . i in (24). the value of
each i such that the upper bound in (19) becomes the smallest of all possitt Biven feasible solution p € #, consider the inner infimum in (2 ) 2



300 N. €. P. EDIRISINGHE AND W. T. ZIEMBA

which is denoted by Z(p). This problem decomposes to / subproblems of lf;ef
0

(25) Z'(p) = inf {a’Zz"p” +B8'Yp,an+p > (v ). ne G)}

a' B J ;

and Z(p) = ¥, Z'(p). First consider the case when Lo, # 0. Let (""ﬁ')b
feasible pair to (25). the existence of such being ensured by the Conc':‘l\/i[yeﬁ.
&(x. u' . n)in 5. Then multiplying the constraints in (25) by L,p,,. since o

{(by Lemma 2.5), it follows that Z(p) > Lip, (x.u'.9'(p)) holds. Furthermore the
continuity and concavity of &(x.u'.- ) is sufficient to guarantee (that 2z
Lp, d(x. 1, 7'(p)) is attained; ie.. choose the coefficients (a', B') correspong;
the supporting hyperplane at the boundary point (7'(p), ¢(x, 1. 7'(p))) of the clggey
convex set {(n.v): v < d(x,u',n), n € ©, v € N} On the other hand, if Lp =

by Lemma 2.5, L', = 0 and (one may choose any %' € @) thus Zp) =1 (|I1€ncé

p)s

it is not necessary to linearize ¢(x. u',m)). Noting that ¢ is a closed set and replacing

the outer “sup™ by “max” completes the proof. o

THEOREM 2.7, The best-linearization lower bownd from (20) is

$,(x) = min
pe

Y, (x. E(p).r)
(26)
s.t. Zu’p”:é’(p)Zp,/. J=1,...,J,

where € is defined in (21).

Proor.  The proof is similar to that of Theorem 2.6. o
It is clear from (22) and (26) that one needs to solve nonlinear programs to obuir

the best-linearized upper and lower bounds. However, as follows from Lemma 28. !

these are in fact convex programs.

LEMMA 28, Lerg: M — W be comex and define f: H" X (0,x) - R by f(r, p} =
pgi/p). Then fis (jointly) convex.

Proor.  We show that epi f is a convex cone.

epi f = {(I.p,é)): 0 2/7g(%),p > 0}

1

{(+,p.8):3v > 0 with v 2 g(vr), vp = 1}

i

{(+,p.0):3v > 0 with v(l,p.8) e &)

where &= {(1.p,8): p =1, 0 > g(1)). Since g(-) is convex, & is a convex set. Net
observe that epi f = rc &, the recession cone of &, and is thus convex. ©
Although the bounding expressions ¢y(x) and é,(x) are convex progf‘i""“,mg
problems, for fixed first stage decisions x. our intent here is not to suggest soluto’
schemes for computing these bounds in the present form. We will use these bounds
to derive finite linear programming formulations by using the properties of ¢
recourse function ¢(x, £,7), being defined by (2). which is the discussion in §%

gty !
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Convexity of the bounds. Observe that the upper and lower bounds are
A 4 through approximating the true probability distribution by discrete probabil-
obm.ne‘?bunons defined on the boundary of the joint domain €. Moreover, these

iy distrt ing probability measures have the same first moments and cross moments

o ati . .

3 Proxlmven true measure. However. these approximating measures may depend on
i ) -

s the g[ional form of &. and more importantly. on the first stage decisions x.
c . .

the fu[r;lalﬂs as shown next, the upper bounding measure preserves convexity of the

Nevertheles>:

d in the first stage dectsions x.
poun _ . .
THEOREM 2 9. The upper bound & (x) in (22) is convex in the first stage decisions
HEO! o
velX \ .
Lt e MM such that x' # v° and scalar v € (0, 1), defining v <
ra,x- e . S L 1), 4
proof. FO ;

LR G v

i

bp(x") = max ’Z}p,,aﬁ(.\' 0 (p))

pe

st 2ot =Ae) n,
! !

N

max  Lp,[ro(x (o)) + (1 - (a2 i p))]
pe X )

Sit. 2o, =0 ey,
J /

< max
u!. /r' ¢

Lollva(x' o (o)) + Toz[(1 - v)b( ' 7 (p))]

tog

sit. Zl"pf, =0'{p") 2 pt. k=12,
i /

= v (') + (1 - v)d(x).

18, 8,(x)}is convex in x. 0O

In§4 when the bounds are formulated explicitly for the stochastic program (1)-(2),
itwill be shown that ¢, (x) is in fact polyhedral convex in x. The lower bound ¢, (x)
(26 may fail to be convex in x. In §4, we use &, (x) to derive a weaker lower bound
which is convex in the first stage decisions v, still using first and cross moments.

NOnetheless, in certain special cases, when the domains = and © are restricted to
be of a certain shape, the bounds ¢,(x) and ¢,(x) are obtained with unique (i.c.,
‘Pdependent of x or ¢) discrete measures on the boundary of Q. i.e., the optimiza-
llof‘s in (22) and (26) are trivial, and consequently, convexity of ¢,(x) is guaranteed.

s indeed is the case when = and © are multidimensional simplices since every
Dom ina simplex can be represented as a unique convex combination of the extreme
poms of the simplex, the barycentric coordinates. Consequently, the feasible set £ in
"mplies that the values of Lp, Lp, forany i and L 'p,,. Lu'p,, for any j, are
uely determined. That is, the upper and lower bounding discrete probability
SUres are being determined independently of the function ¢ or the decisions x.
15 Special case s discussed in Frauendorfer (1989).

Unig
Mmea
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When & and n are univariate random variables. hence the domains are
sional simplices. the bounds & (x) and ¢,(x) are simplified as follows:

THEOREM 210, If £ and n are both univariate (with interval domains E
O = (a,.dal such that a4, <d, and a, < a,), then denoting the
El&nl. the upper bound & (x) simplifies to

, =l
Cross momey,; C

(G F im-C\ [E-a, s
(27) é,(x):(f" Eol v, 4m _)+(; . ¢(\.n|,\m'
Vdy, T oa, ﬂ]‘f a, —a, §Aﬁ‘

and the lower bound b, (x) simplifies (o

(i -7 i & — C n-a C-a,

R [ Vi L (.ﬂ‘_n)d) (S
a, —a, \ a,-—m a, —ay n-a, !

Proor.  Let us consider the upper bound when ¢ and n are univariate.

Setting
u'=d, u’=ad.1'=a, and ¢’ = ay. from the corresponding feasible region €y

Pyi- P2 Py and p...one can show that (p,, + p,,) and (a,p,, + d,p,,) are unigue,
determined for each s = 1,2 as foliows:

+ ﬁ' _E and +p 57 ay
) D> = T n > S
P P a, —a, Pa b a, —ay
. . JES _ _ C—d,n
APy ~ayp, = G -z and  dupy + dpyy = ?T
[ € 0
Moreover, since
a, —- & ]
! >0 and i = >0
a,—ay a, —a,
., an-C . C—dyn
n‘:%e(-) and 9= —'= € 0.
a ~¢ &-a,

Substituting these in the upper bound b {x) = ):,3:,2,::lp,,rb(.\‘.u’.ﬁ') gives (271
Similarly. one can obtain the lower bound in (28). =

The bounds in (27) and (28) for a saddle function in 3-dimensions are depicted m
Figure 1.

ReMark.  Frauendorfer (1988c) derived bounds for the expectation of a convex
concave function using the following moments (for the case when = and © ar
multidimensional reetangles):

o= [ (T |Pedn) forail A€ 8.,

e
m ;o= f”/( I1 fk)P(dﬁ»dﬂ) forall/=1...., Land A € B,

(29) ) 0 laen

m, = f_(kr[ §A)P(d£) forall A € B,

= [SIAY
’”A\_J = f”’fk(llﬁ\’?/)[)(df\dﬂ) forall k = |

e

one-dim'en I
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is the set of all subsets of {1..... K} and B. is the §el of all subsets of

where Li The moment information in (29) allows one to de[erm_me upper and lower

',‘[remal (discrete) distributions uniquely. For the special case of univariate

poundiné Lr;e upper and lower bounds due to Frauendorfer (1988¢) can be shown to

I ~,de~\’5ilh those given in (27) and (28). respectively.
coine

Relation to generalized moment problems. An immediate concern would be

13 not the bounds &, (x) and ¢, (v) derived in the previous section are tight,
whether Ofe of the corresponding generalized moment problems. We will show that
in the 53:; is the case. First. observe that it is possible to attain these bounds as the
(hu:ciﬂs‘?pcc[ation in certain cases, ie.,

* em 2.1, ff the convex-concave recourse function d(x. &, m) is bilmear in ¢

Tf”;“j_m‘. fixed x. then ¢ (x) = Hx) = (1) holds where & (x) and &, (1) are
and N

fefined (22) and (20), respectively.
de

PROOF- Bilinearity allows one to simplify} lhe upper bounding formulation in (22)
« that the constraints deﬁnilng the set ¢ imply that ¢, (x) = &(x). The lower
Boundmg result also follows trivially. o _ _ ‘

To show that the bounds ¢,.(x) and &,(x) are the best using first and cross
moments, consider upper and lower bounds on ¢{x) by formqlz_ilmg the correspond-
ing moment problems as follows, where the set of all probability measures on ) is

denoted by

J dx. Em)P (de.dn)
Q

st ng(d,E‘dn) = £

0
. [P (de. dn) = 7.
0
f‘fk’?/p(d,f-dn) =,
0
k=1, Kit=1,..., I.
and
(1) > Vi(x) = inf v E.m)P(dE. dn)
(1) > Vi) = it b(r.m
st [P (de.dn) =&,
0
(31 )
fnP(dg.dn) =7,
Q
f’fAU/P(‘{f~dn) =m,,,
0
k=1,..., Kil=1,..., L.
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3

FIGURE 1. Upper and fower bounds using first und cross moments i the univariate case,

THEOREM 2.12.  Assuming that (30) and (31) are feasible, V, (x) = ¢y(x) anf '

VilaY = ¢,(x) hold, where ¢ (1), &,(x), Vylx), and V,(x) are defined in (22), ()
(30), and (31), respectively.

PrOOF.
bound is analogous.

We shall prove the result for the upper bound. The proof for the lower |

Consider the symmetric dual problem of the upper bounding moment problemin

(30). which is a semi-infinite lincar program. By feasibility of (30), compactness of {.

and continuity of ¢(x, - . - ). it follows by Theorem 1.1 that strong duality holds and
thus,
K _ 1.
Vu(x) = i;‘f 6, + Z 01& + Z H/zﬁ/ + ZBA/’"H
A=1 1= At

K L
st B+ L 0lE + Y 87, + L8,Em, = d(x.E,m),
k.t

k=1 1=1
v(¢,m) ER
(32)
IN _ i
=inf 8, + Y 6,£ + Y o'm,+ Yo,m,,
o A=l =1 W
Iy 1
St 8+ 2D 6w+ Y07+ Y 6,uin = d(x,u'm)
k=1 1=\ At
Vi=1,.. . Ln¢€b

i
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ity in (32) is due to convexity of &(x.-.7n) and the Assumption (A4) that

The C—(]l;dl@ Consider any feasible solution p € ¢ Due to Lemma 2.5. £,p > 0
implteS
Lrlp, R
T, T eo.
oy
55,0 pick any arbitrary 7'(p) from the domain ©. It is easy to verify that the
If 2,00 -

S g i), 1= L. [ are dual feasible to (32)' hence V,(x) >
pairs (,:"L/’l #'(p)) for any such feasible solution p € €. That is, ¥, (x) > ¢, (x).
E"'p”ctlzi'n; (h‘al V, {x) < ¢,(x) holds, note that. by Theorem 1.1, (30 is solvable. Let
Pnge 2 maximizing measure in (30). Now. applying the upper bounding technigue in

b previous section, with the underlying probability measure being replaced by P*,
the P )

vields

[dCx )P (de dn) < by (x).

(3 0

ince P* has the same first and cross moments as the true probability measure.
s .

Therefore, V,(x} < &,(x) holds and the proof is completed. ©

3. First moment bounds—dependent case. If the random vectors ¢ and # are
sochastically independent of each other, then Jensen's inequality e_md the
Gassmann-Ziemba (1986) inequality can be utilized simultaneously to obtain upper
and lower bounding functions for ¢(x), using only first moments, as follows.

(1) d(x) = E [ Efo(x ¢, 7] (due to independence)

En[du(x. £, n)] (due to Jensen’s inequality)

\%

\%

J 1 J
min{Zdu(x,g,p’)#l: Z v'p, =7, Z#, = 1}.
. =1

w2l j=1 =1 J

The last inequality follows from the Gassmann-Ziemba inequality being applied on
the concave function ¢( x, &, ). Similarly, one obtains

(%) (x) <

! ! !
max{ Yoo(xa,m)A Lua, =& YA = l}.
Az0 D) el =1

However, under dependence between ¢ and 7, the above derivation is no longer valid
and thus one has to proceed differently. In this section, we show that the approach in
2 can be used to obtain tight lower and upper bounds for @¢(x), in the dependent
@se, under the firs moment information. These bounds could also be viewed as
Eeneralizations of Jensen’s and the Gassmann-Ziemba bounds, from the pure convex
@s¢ o (he convex-concave case. Most results follow trivially from those in the

1 .
Dr“;e thankfully acknowledge the referee who pointed out the dual feasibility here, thus shortening the
00,
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preceding sections. Detine the bounded convex polyhedron ¢ by

(36) €= {p eNT Y (e p, = (E7). Lp, = 1.p, >0/
[

o
Then,

THEORFM 3.1 i upper bound 10 &) using only first moments js

= max  Yp,b(x.ui(p))
pE L ()
(37)
s.t. Zt"p,,iﬁ'(p)z,o,,. r=1....7
! 1
A lower bound 10 (1) using onlv first moments is
b (1) = min Yo d(x.Ep).r)
nes
(38)
s.t. Zu’p” :f’(p)Zp,/‘ J=1,..., 7,

where € is defined in (36).

Proor.  ¢,.(x) < agz (v) and ¢,(x) > d;,_(.\') trivially hold since ¢ ¢ Z, where
d(x)and é,(v) are dcﬁngd in (22) and (26), respectively, hence the result. g
To see that the bounds ¢, (x)and ¢,( ) are tight, formulate the upper and lowy |

bounding problems as generalized moment problems. One obtains

Tueorem 3.2 Defining 2 as the set of all probability measures on the domain . |

(39) b (V) = sup {fzb(,v.é,n)P(d-f,dn): f-fP(d-f.dn) = ¢,
re® 70 @
/;/nP(t/-f,n) =7
and
40 b, (x) = inf ; [P (as =¢
(40) b ,)‘Q(f{f“d" CEMPdEdn): [ €P(de dn) =€,

[P (dény =7
{1

hold where d;,(.\') and rl;,'( v) are defined in (37) and (38), respectively.

Proor.  Noting that (39) and (40) are always feasible, the proof is similar t© that
in Theorem 2.12. @

These first moment bounds inherit the following propertics:

THEOREM 33, (1) d;(/(.\') IS convev in x.

@) Af ¢lx &) is jointly linear in ¢ and n, then d;(_‘(.\') = $(y) = d;,_( x).
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£

Fiure 2. First moment bounds in the univariate case. To determine the upper bound. pick the plune
IGLU -

through first moments. which gives the maximum height of U U". etc.

() f the funciion & is convex G random vector £). for fived x. then
(1) d;,(x) simplifies 1o Jensen's lower bound, and
(i) &, x) simplifies 10 the Gassmann-Ziemba upper bound.

Proor. Straightforward. o

As pointed out in the previous section. when first and cross momcnts are uscd the
resulting bounds are trivially determined for the case when domains are muludlmeq~
sional simplices. However, with the first moment bounds ¢,,(x) and_ ¢, (x), such is
not possible. As illustrated in Figure 2, when & and 7 are univariate, the upper
bound is determined by choosing a *vertical”™ cross section of the saddle s_ur[acc‘
through the point of first moments (@) such that the line joining the points of
ntersection of the saddle surface has a maximum height at @. _

When £ and 1 are known to be stochastically independent, the bounds in (35) and
(34) are generally tighter than those in (37) and (38), respectively.

4. Application to stochastic programming. In this section, the bounds derlvgd
using first and cross moments are applied to the stochastic program (1)-(2) to obtain
finite mathematical programming formulations. The intent here is to ‘develop upper
and lower bounding formulations which are amenable to efficient solution techniques.
such as linear programming.

Consider the upper and lower bounds é,.(x) and &, (x) in (22) and (26), respec-
vely, on the expectation $( x). using first and cross moments of the random vector.

With VA4 being defined by (1), the resulting upper and lower bounding approxima-
ftons for Z* are

) Z* < 73 = minf{c'y + du(1))

[E=RY

Y
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and 6 (y) using the recourse function definition in (2) as
jte 91
(42) Z¥ 2 Z7 = min{c'y + &, (1)} |
e ] (47)

ProrposimoN 4.1, For the stochastic program in (1)-(2). under the A'm'mp, ! = mn {ZP,,(I( Sy oy WA+ T(E(p))r - /l(é’(p)) - 0. Vj}_
(ADAAS). b (x)is contex polvhedral in x € X. where &, (x) is defined by (23) ton s(2) ped. v\

ProoF.  That ¢,.(x)is convex in x was shown in Theorem 2.9. Here we sha
. ] . Show g, 2) and (A3):
it is convex polyhedral. when applied to the recourse function definition ip () [ pue 10 our Assumptions (A2) an

Forany i =1..... 1. J

¢ (x) = _min Yoa(e)y
(43)  S(v. ' A (p)) = min{g(A(p)) ¥ W = (') = T(u')y, v » 0} pEG v 20
s.t. Wy! + (Tyx — hy) Zf’u
Denote the feasible set on v'. 7= 1... .. I (simply referred to as v), for any given | (#) !
by 2(x). Thus. ‘ N
. , ' + Y (T« 7/1k)(2142;),,)=(), v

(44) ¢ (x) = max min G(y,p) = Zp,,q(n’(p)) [ gt -

pet ey o

! Although for any given x € X, ¢,(x) could be evaluated by SQIving a linear
By Assumption (A3)in §1. G(y.p) = L, ,q(e'Yy'p, . 1.e. G(y.p)is bilinear in ¥ ang program, observe that it cannot be concluded fr_om {48) >ll_1al_ ‘1’1(«”_ is convex in x.
p- Moreover. since ¢" and #/(x) are polyhedral sets. interchanging maximization g Trerefore, in general, the lower bounding approximation Z} in(42) mvglves noncon-
minimization in (44), vex optimization. To overcome this Compulgllonaﬂ dlfﬁcu!ty, we derive below an
Jtemative convex polyhedral lower bound ¢,(x). using first and cross moments,
(45) b (x) = min maxG(y.p). which is generally weaker than ¢, (). -

veTtanes Construct the (K X L)-dimensional matrix M of cross moments. with the entry at
the kth row and the /th column being m .

Using linear programming strong duality for the inncr maximization in (45),
ProPOSITION 4.2.

maxG(y.p) = min w4 w'E +wig o+ Yoo (®) &(x) > by (x) > &, (x)
pe w ‘7 -
. ) where
stoow+whe +wiet + Y weiwl, 2 q(e') v, Vil B )
b (50) d,(x) =min Y q(c')y
v ;

Therefore,

sty Wyl = /1(5) - T(g),n

(46) S (x)=min  w'+w'E+win+ Y, w ;
2 § n IYMeV]

von

k.t
LW = (M) — T(M,)x + (hy = Ty (= 1)
s.L. W' =h(u'y — T(u')x, Vi, )
> : = ) =1,....J,
w' 4+ whet 4 wle+ Yuieiwl - q(o) y 20, Yk I=1....Ley >0,
k.t — .
i My, 1s the Ith column of the cross momeni matrix M. Moreover, &, (x) is convex
S0 polyhedray inx,
¥ 200 Vi

IPROOF. Summing the constraints (involving variables y') of (48) for all j =
and thus is convex polyhedral in x. © end

T

Since ¢, (x) is convex polyhedral. as follows from the above proof, the ”p‘[); o)
bounding approximation Z; in (41) can be solved as a linear program. O"[hl‘

contrary, the lower bounding approximation ¢, (v} may fail to be convex. To se¢™

)

YWy = h(€) ~ T(€)x
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follows since p € ¢ Multiplying the constraints (involving variables v1) g

: . f(
(for some / =1... .. L) and summing the resulting equalitics together 481p,

for

I
(hy — T,x)m, + Z (hy = T xymy,
A=t

(52) Y oua
7

=M - T(M)x + (I, — Towl{7m - 1).
Since the constraints are aggregated. (51)-(52) provide a relaxation to th
of (48). hence a lower bound which is convex polyhedral in v. =

The constraint aggregation procedure above should be viewed
way to obtain a convex polvhedral lower bound from the generall
in (48). as evident from the next proposition.

€ feagibye v

Y nonconvey bouy
W

PropPOSITION 4.3,
sunplex, then ¢, (1) = 5,(,\') forall v € X.

Prooy . Since ¢,(v) > J,( v) holds trivially from (49), we only need to sh
d,(v) < b,(x) holds when O is a simplex.

For every feasible (L + 1)-tuple (Z v Loyl =1 L) of (50), where " s
I. SRR observe that © being a simplex implies that v VI Vi are completely an
Flnlquely determined. It is easy to verify that this unique solution v, for the C?'losen
feasible (L + [)-tuple. is feasible in (48) since Lp, and L u'p, are umql;el\
determined for @ being a simplex. 0

Therefore. not only is the fower bound $,(x) in (50) tight in the sense of

Proposition 4.3, but it also allows one to solve the resulting lower bounding approy;
mation

oW (hy

(53) Z;], == min {(".\' + 51(.\')}
vEX

as a linear program. We illustrate these bounds on a simple numerical exampic
below.

Examreie 4.4 Consider the following two-stage stochastic programming (complet

recourse) problem with random right-hand side. technology matrix, and cost coefi-
cients:

Z7 = minly, + 2x, + E, ,| min

(=31

Iy, + 3771,"3 + v

vz b

so2wp—aas boosit 2v v, = 3v, =24 36, - (g A

+ 4&x.,
rp+ s gl

—vp 43y, vy =4 28, —x 360

where = = [0.1] x [0. 1] = © and the joint distribution of (£,. &,. 7,.7.) is gven®

27y if .
r i <&

FlEdm) ‘l—,(l )
AL

i A

as a ra[heI natg, i

If O. the domain of the random vecior . iy an L‘di”'l’flvlo:;; i
Siong
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1.2 with (¢,.m,) being independent of (¢,,7n,). One obtains Ek =7, =053

jrk = ].Z—zmd the cross moments n,, = m,, = ¢ and m, = m, = 0.25.
jor k= (‘he Jower bounding approximation in (53). solving only a linear program.
using 7 3.036Y and the approximate solution x, = (0.5.0). Using the upper
3icld5_ é’Lﬂpproxinmliun in (41} and solving only a lincar program. one obtains

wuﬂd;";qﬂ and the approximate solution x, = (0,0). Thus. the relative error of the

% =

{ o
bt)uﬂds 1§

37977 - 3.6369

36369 <%

over, from the dual solution of the upper bounding linear program, one obtains
reovers

M,O the (rue distribution is approximated by a discrete probability measure on the
;:)dlnd‘lry of the joint domain as «' = (0,0,0.4580,0.5420). plw') = 0.3306; " =
und:

0.05821,0.2538). Plw?) = 0.1694; »® = (1,1,0.5420,0.6261), p(w’) = 0.3306; and
“J:'(B 1.0.4180.0.4180). plw') = 0.1694; where p(w) denotes the probability as-
L;gnedlb[he point @ = (£ &ampm) .
“Gince the stochastic program aboye has cqmplete recourse, using the lower bound-
ing solution X, in the upper bounding function ¢, (x) in (46), one obtains a less tight
ypper bound (0 Z* as 4.1226. o o N

Since (£, M} 18 independent of (£,, n,), the univariate bounding inequalities (27)
and (28) may be used successively to determine tighter bounds than above. Under this
pairwise independence, one obtains the bounds 3.6369 < Z* < 3.7973. Using the
lower bounding solution, one computes a slightly weaker upper bound (under
pairwise independence) as 3.8874.

5. Concluding remarks. This paper presents a general approach for bounding
the expectation of a saddle function using limited moment information when random
wectors have compact domains. The procedure formalizes concepts from Birge and
Wets (1986) and Frauendorfer (1988d) in an attempt to formulate bounds as finite
mathematical programs. Solutions of these mathematical programs provide discrete
probability measures on the boundary of the joint domain of the random vectors 10
determine upper and lower approximations for the given stochastic program. Furthey-
more, these measures are shown to solve the respective moment problems, thus in the
sense of Kemperman (1968), the derived bounds are tight. In fact, it follows that with
wsing first and cross moment conditions, the linearization strategy is optimal. in the
semse of the specific moment problem. This is also the case with the bounds due to
fravendorfer (1988b. ¢, d, 1989). However, if other joint moment conditions such as
Elf, ¢, are used, then linearization may not be an optimal strategy and one needs to
e higher order, such as quadratic, function approximations which is due to the
Tature of the moment problem of concern. In the latter case, even with a lineariza-
tn strategy, our approach can be shown to yield valid bounds. although they may not
gf"e_m“Y solve the moment problem of interest.

II‘IS €asy to prove that the bounds ¢, (x) and ¢,(x) behave monotonously under
Dan“v'o"i“g the domain, an approach generally used to solve stochastic programs to
“Oplimality, see Birge and Wallace (1986). In fact, these bounds converge to the
‘tfl‘llsm(?:lhvalue of [he stochastic program as long as the diameters of the partitioning
ne Canee cells bf:mg polytopes themselves:) are suthc_lently small, and-furthermgre,
hing On‘/fin_clmm convergence of approxnmatc solutions to a true optimal solution,

’ €pl-convergence arguments, see Birge and Wets (1986). Nevertheless, such
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assertions do not hold, in general, regarding the relaxed lower boung a(
exception being when O is a simplex. Despite this shortcoming. the Convey p, & N
lower bound ¢, (x) is numerically attractive because even with larger dimensiohedra,
number of constraints grows only linearly in the dimension L of 7 since s
program defining ¢,(x) has only L + | blocks of constraints. The n
variables, however, depends on the chosen shape for domain ©.

Towards solving stochastic programs to e-optimaiity, what remaing to be addpe,. |
is the choice of such partitioning schemes so that the computational burdey do:sk’{
become excessive; for instance, how to refine partitions based on i"forma(i(m g:_nf,\:
from previous partitions. Frauendorfer (1988¢) addressed the issues when o
are rectangles. More recently, simplicial domains have been investigateq by Fraua:n.
dorfer (1991). "

An extension of the results in this paper to the case when domains are Posgiy,
unbounded sets appears in Edirisinghe and Ziemba (1994). '

he “ne;.
Umbe;
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