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Abstract

This paper is concerned with implementational issues and computational testing of bounds-based
approximations for solving two-stage stochastic programs with fixed recourse. The implemented
bounds are those derived by the authors previously, using first and cross moment information of
the random parameters and a convex-concave saddle property of the recourse function. The paper
first examines these bounds with regard to their tightness, monotonic behavior, convergence
properties, and computationally exploitable decomposition structures. Subsequently, the bounds
are implemented under various partitioning /refining strategies for the successive approximation.
The detailed numerical experiments demonstrate the effectiveness in solving large scenario-based
two-stage stochastic optimization problems through successive scenario clusters induced by
refining the approximations.

Keywords: Stochastic programs with recourse; Bounds on expectation of saddle functions; Partitioning
strategies for rectangles; L-shaped decomposition

1. Introduction

In many real-world sequential decision making problems, given a set of possible
alternative actions available at the present time, one chooses a decision in the face of
uncertainty of the future states of nature. Suppose the future uncertain events are
modeled using random variables and the decision problem is posed in an optimization
framework. This yields a stochastic optimization model, the solution of which entails
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choosing a feasible decision at the outset which would hedge well against all possible
realizations of the random parameters with respect to an objective criterion such ag
minimizing total expected costs.

The focus here is on the following stochastic programming model which involyeg
making decisions in two time periods, known as the two-stage stochastic linear
programming problem with fixed recourse (see for instance, Kall [13] and Wets [18)]:

Z'=inf x+E|[¢(x, 0)] 0
s.t. Ax=b,
x20,

where the second-stage recourse function is given by

¢(x, w)=(x, £, m) = ir;f a(n)y (2)
st. Wy=h(£)~-T(€)x,
y=20.

The domain of the random (K + L)-vector w:= (£, n) is denoted by 2(c R¥*L),
marginal support of ¢ is F(CRX) and that of 5 is @(cRL). We assume that
1= EX 6. Ais afixed (m, X n))-matrix and c is a fixed vector in R™. Stochasticity
is present in the technology matrix T: 5 — R™2*"1 right-hand side h:RX — R™:, and
objective costs g:R™— R"2. E[-] represents mathematical expectation with respect to
the true probability measure P" on (2. The matrix W (€ R™*"2) is deterministic,
hence the term fixed recourse for (1)—(2).

In (1), the first period decisions x must be chosen prior to the realizations of the
random events w = (£, n). However, after the anticipative decisions x are chosen, an
adaptive (or second stage recourse) decision y may be chosen based on the realized
outcome of the random parameters @ to bring the system close to a specified
description, described by the constraints in (2), at a minimum cost. Consequently, one
needs to determine an anticipative decision x which leads to the optimal trade-off
between the first period direct costs and the second period expected costs. This latter
cost estimation makes the solution of (1) difficult. The random parameters may be
described by a set of scenarios, which may possibly be very large in number, or by
continuous probability distributions. In the former case, (1) may be written in so-called
extensive form involving a very large number of variables and constraints. In the latter
case, one generally resorts to nonlinear programming approaches with multidimensional
integration or quasi-gradient methods with sampling from the distribution; see for
example, Ermoliev and Wets [8] and the references therein.

Another promising approach for solving (1) is the use of approximations. For an
illustrative survey, see Frauendorfer [10] and the references therein. These methods
advocate approximating either the probability distribution or the objective function itself,
or both. The aim is to obtain deterministic optimization problems which are easily-solva-
ble lower and upper approximations on (1). In bounds-based approximations, lower and
upper bounds on the expectation functional E¢(x) = E[¢(x, w)] of the second-stage
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- recourse problem (2) are determined which then would be used in the first-stage

minimization to obtain approximate solutions. When approximating the underlying
probability distribution P" for the latter purpose, one determines a random vector { to
approximate the original random vector @ = (£, 7) such that:
(i) The resulting problem with ¢ in place of w is relatively easy to solve.
(ii) The value of the resulting problem serves as a lower (or upper) bound for the
optimal value Z*.
(iii) It is possible to revise the approximation ¢ such that the resulting bound can
monotonically improve with each revision, along with a sequence of approxi-
mate x solutions which converges to an exact optimal solution of (1).
Property (i) is usually accomplished by requiring ¢ to have a discrete distribution, with
a relatively small number of atoms, together with an assurance that the approximate
problem inherits the required convexity properties (for the minimization). What is even
more challenging is to obtain these approximate problems as linear programs having
decomposable structures. For property (ii), one usually determines { such that certain
moments of it coincide with those of w. In particular, by casting the bounding problem
in a generalized moment problem setting, one solves the semi-infinite dual of the
moment problem to determine required approximations; see for example, Kall [14].
Finally, property (iii) is assured by refining these bounds to a desired degree of accuracy
by repeatedly applying them on subsets of the domain of the random vector w; see for
example, Huang et al. [12).
In the sequel, we assume that (1)—(2) has complete recourse, i.e.,

{zeR™:Wy=127, y>0) =R™, (3)
which also implies that the recourse problem (2) is feasible w.p. 1 for any x € X where
X={xeR": Ax=b, x>0}, (4
Moreover, assuming that mW < g(n) is feasible w.p. 1, ¢ is obtained as a proper

convex function in A(¢) — T(£)x, for x € X, as well as a proper concave function in

¢(n). Furthermore, ¢, h, and T are considered to be affine transformations of the
random vectors, i.e.,

K
T(§)=To+ Zkak:

k=1

h(§) =HE+hy, and gq(n)=Q0n+qy,  (5)
where H € R™>*X and Q € R"*" are fixed matrices while h, € R™ and g, € R" are
fixed vectors. Consequently, the recourse function ¢(x,...) is obtained as a proper
convex-concave saddle function for each x € X.

This paper is concerned with implementing the bounds-based approximations derived
in Edirisinghe and Ziemba [5], using first and cross moment information of the
underlying distribution. On one hand, these approximations correspond to discretizing
the probability distribution as mentioned under property (i), thus, the bounds are sharp,

and on the other hand, these bounds are obtained as solutions to the respective moment

problems, thus satisfying a tightness measure according to an optimization criterion.
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While the latter bounds are applicable under convex polyhedral (bounded) {2, by
restricting the domain {2 to be of rectangular shape, one achieves two important
implementational advantages. First, when refining the current approximation (see prop-
erty (iii)), the partitioning of rectangles is rather straightforward. Secondly, and more
importantly, the resulting lower bounding approximation can be shown to involve no
more than (L + 1)-blocks of constraints/variables.

The paper is organized as follows. In Section 2, we summarize the first and cross
moment bounds developed in Edirisinghe and Ziemba [S] along with their association
with the underlying moment problems. Section 3 establishes that these approximations
are monotonic and they converge to true values under a successive refinement strategy
that utilize partitioning of the domain. In Section 4, under rectangular domains, the
approximating models are shown to admit a two-stage decomposition. Such decomposi-
tions are particularly attractive when using parallel computation to solve problems with
larger dimensions of uncertainty. An implementation of the first and cross moment
bounding approximations for solving scenario-based two-stage stochastic programs is
discussed in Section 5. Various refining strategies for successively improving the
approximations are discussed and tested computationally on randomly generated
stochastic programs. Section 6 concludes the paper with some remarks.

2. Bounds using first and cross moments

Assume that 5 and © are compact, convex polyhedral sets, being finitely generated
by extreme points given by

E=cof{u', u?,...,u'} and O=co{v', v?,...,v’},

where cof-} is the convex hull. Denote the first moments of the underlying probability
distribution by @ := (£, %) and the cross moments by m,, := E[ &mlforall k=1,....K
and /= ., L. Using the above moment information and (2 being a polytope, the
following lower and upper approximations on (1) hold:

Theorem 2.1 (Edirisinghe and Ziemba [5]).

Z*' < inf {c’x+ sup Z Zp”d)(x u, g’ )} (6)

xeXx p.Bi=1 j=1
J ) ) J
s.t. Y vip,— B Y p,;=0, i=1,..1,
j=1 j=1
pPE?,
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and
"> mf {cx+ inf Z Zpud)()\ al, vi) (7N
i=|j~|
L
Z QJZpU=O, Jj=1,...,J,
= i=1
pE?,
where the polyhedral set & is defined by
1o o ~
={peR/: Y Z(”"UJ)PU;(&?’)’
i=1j=1

Z Zuiv/pu=m“ Vi=1,...,K

=1j-1

1oy
Z Zpij=1r pij>0 . (8)
i=1j=1
For the evaluation of the preceding bounds, observe that a probability measure pPE?
as well as the variables '€ R* (i=1,...,)and o/ € R¥ (j=1,..., J) are required
to be determined optimally. It can also be shown that B'€ @ and a’€ = for any i
and j. Consequently, the bounds in Theorem 2.1 are attained according to certain
discrete probability measures (approximating P™) on the boundary of (2, implying that
the bounds are sharp. Nevertheless, the yardstick of tightness of bounds is usually the
underlying moment optimization problems involving the first and cross moment condi-
tions. That is, the bounds would be examined with respect to the upper and lower
approximations due to moment problems given by

7" = Xiga{clx+fn¢(x’ w)P"(dw)} < Xigg{c'x+ }fi;;fnqb( x, w)P(dw)}
(%)

and

N
It

inf {c’x+fnd>(x, w)P"(dw)} > Xig{dﬁ Pigf@jnax, w)P(dw)},
(10)

where & denotes the set of all probability measures on {2, characterized by the (known)
first and cross moment conditions. The validity of the inequalities in (9) and (10) is due
to P ep,

Solution of the above moment problems is not generally easy. However, the
polyhedral nature of 2 and the saddle property of ¢ may be exploited for solving the
semi-infinite duals of these moment problems; see Edirisinghe and Ziemba [5]. In
particular, it develops that these moment problems have solutions which are the same
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(optimal) discrete probability measures p as determined in the upper and lower
approximations in Theorem 2.1, which thus implies that the bounds in the latter theorern
are tight.

Moment problems involving saddle functions have been solved in literature under
various assumptions on the shape of {2 as well as utilizing various higher-order moment
conditions. For instance, when all joint moments of the £ vector and all joint moments
of the m vector, along with certain higher degree cross moments between ¢ and 7 are
specified, and with random vectors having compact multidimensional rectangular do-
mains, moment problem solutions have been obtained by Frauendorfer [9]. Also,
extensions to the case when {2 is unbounded polyhedral can be found in Edirisinghe and
Ziemba [6]. .

When implementing the bounds in Theorem 2.1, however, the more important aspect
is whether (6) and (7) can be solved using linear programming methodology. Although it
appears at the first glance that the upper bound in (6) requires optimization with respect
to BfeRE (for i=1,...,1), it develops due to the structure of the recourse problem
(2) that this upper approximation may be recast as a linear program. In particular, this
means that the optimization with respect to 8 in (6) no longer becomes necessary; see
Edirisinghe and Ziemba [5]. Moreover, in Section 4, we show a further decompf)siti'on of
this linear program for efficient computation. In contrast, the lower approximatlop in (7)
remains a non-convex problem owing to the optimization with respect to a’. As a
possible remedy to this situation, the following LP formulation has been derived as a
weaker lower bound using first and cross moments.

Theorem 2.2 (Edirisinghe and Ziemba [5]).

Z" > mir; {¢x+ ¢ (x)}, (11)
where
J ot .
¢,( x) = min L gy (12)
s.t. w( )f‘, yf) =h(&) - T(&)x,

J K
W( Z ”:j)’j) = (hy— Tox) + Z my (hy—Tyx),
k=1

j=1
I=1,...,L.

Observe that the lower bound ¢,(x) is convex polyhedral in x. While this loYver
bound is generally weaker than that in (7), at least when the polyhedral domain @ isa
simplex, it has been shown that (7) and (11) are identical. Section 4 derives 3
decomposition of this lower approximating LP for efficient computation, and the
implementation is considered in Section 5.
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3. Monotonicity and convergence

One advantage of using bounds-based approximations, such as those discussed above,
is the ability to generate ever-improving sequences of upper and lower bounds on the
optimal value Z* of (1), by applying the bounding strategies on subsets of the domains.
The goal of this section is to show that the preceding first/cross moment bounds when
applied repeatedly on partitions of the domain {2, have the property that as these
partitions become finer the bounds become tighter. The exposition here is for the upper
bound in (6) and the lower bound in (11) under compact polyhedral domains. These are
the bounds that will be further discussed and implemented in the remainder of this
article.

Consider a partition . on {2, consisting of sub-cells £, (= 5 X @,), for r=

r

1,.... R, with positive probability mass p, such that the closure of (2, is a polytope and
QN0 =@, r, ref{l,...,R}, r=r, (13)
R
Uae.=a0

(14)

Since a chosen sub-cell {2, can be an open set, when applying the bounding strategies
on this cell, the extreme points of the closure of 2, are considered. Also denote the
required first/cross conditional moments on {2, for r=1,..., R by

E=E[£1(£,m)eq)],
7 =E[nl(& )€ n,],
my, = E[ L l(é.n) e .Q,] V(k, 1).
Let ¢, (x) denote the resulting upper bound when applying the upper bounding strategy

in (6) on the expectation of the recourse function, i.e., E¢(x) < ¢, (x) where

¢y (x) = SUE{ZPijd’(X, u', Bi): Zujpij_ Bi):Pfj=0»
iJj j j

(15)

While ¢, (x) has been shown to be convex polyhedral in Edirisinghe and Ziemba [5],

the following equivalent formulation of (15) will be used to show that this upper bound
is monotonic.

i=1,....1, pe%}.

Lemma 3.1.

K L
¢y(x)= irflrf mo+ X mE A+ L owim+ Lommy
k=1 =1 ]

(16)

K L
st wo+ L omib+ Lowin+ L b= (x, £,m)
k=1 =1 ki

V(£ m) e,
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Proof. Due to Theorem 2.12 in Edirisinghe and Ziemba [5], ¢,,(x) is the value of the
underlying moment problem with first and cross moments, ie.,

$u(x) = sup [ é(x. & m)P(d€, dn), (17)
Pep’ N

where &2 is the set of all probability measures on {2 with first moments (£, 7) and
cross moments m,;. Now due to Theorem 1.1 of the latter reference, since {2 is compact
and ¢ is continuous, applying the strong duality result on (17), (16) is obtained as the
dual problem of (17). O

Theorem 3.2. Under a partition (13)-(14) of the domain 2, the upper bound ¢, (x) in
(15) behaves monotonically for all x € X.

Proof. Let ¢[(x) denote the resulting upper bound when applying (15) for the
expectation of ¢(x, £, 1) conditional on (&, ) € CI(£2,), the closure of {2,. To prove
the required claim, it must be shown that

E¢(x) < Z pdy(x) <

r=1

By Lemma 3.1,

$u(x). (18)

K
7"'0(’) + Z gkrﬂ-k r)+ 2711’7"'12(’) + kalﬂ'u(’)

I=1

"(x)= inf
#(x) = inf

s.t. 0(’)+ Z‘fk""k(’) + Z"h (’)+§§knl7"'l?l(’)
=1 ,

Since’ E-:errgr ?’=Z pr-ﬁr and ’nl(l=Z prm;l’

dy(x) = mf ZP;"T + Zprfk'“'k + Zpr"h""'l + Z prmkITrI:(;I
lr k,r
st w0+ Z‘fk’“’k + Yool + L émmi>o(x, £.m)
k ! k1
V(£,m)eCl(8), r=1,....R,
> inf

Ypmo(r)+ ?p,gk’m‘(r) + ?::.p,ﬁmf(f)

+ k):l:rp,mmf,(r)
s w0+ Bl + Tanf(0) + Téinmi()
>d(x, &,m) V(&) EC](‘Qr)"

b (x),

r=1,...,R

I
™M=
]

-
I
—

thus proving the second inequality in (18). To prove the first inequality in (18), note that
EHx)=Z,p Eld(x, & mI Q] Since E[¢(x, £, 9)| 02,]< ¢;(x) holds for r=
l,...» R, the proof is completed. O

Next, we turn to the issue of monotonicity of the convex lower bound ¢,( x) in (12).
Since this lower bound may not generally represent a solution of the moment problem in
(10), to show its monotonic behavior, one has to proceed differently than in the case of
the upper bound.

Considering the partition .% in (13)-(14), let ¢;(x) denote the resulting lower

pound when applying (12) on (the closure of) the sub-cell £2,, r ., R. Conse-
quently, one has to show the inequalities
R
E(¢)= X p,d[(x) > ¢y(x) (19)

r=1

to prove the monotonic behavior of ¢,(x).

Theorem 3.3. Under a partition (13)—(14) of the domain (2, the lower bound ¢,(x) in
(12) behaves monotonically for all x € X.

Proof. Since CI({2,)C 2 holds for any r=1,...,R, one may apply the lower
bounding strategy (12) with conditional moment information ¢, ", and my,, but with

extreme points of CI({2,) being replaced by those of {2 to determine a weaker lower
bound as follows:

E[d)(x w)leQ] ¢[(x) (20)

7
> min Zq(v/)y’j
Y20 jay

s.t w();y’f)=h(§')—T(§')x,

7 K
W( Z Ulj)"j) =7/ (hy— Tox) + Z my(h,—T,x) VL
J

k=1
The second inequality in (20) can be easily shown due to that each extreme point of

CI(£2,) can be expressed as a convex combination of the extreme points vl j=1,...,J,
of €. Therefore, it follows that

R
Ed(x) > X p,dl(*) (21)
r=1
R J ) ‘
>min Y p Y q(v))y”
y7/20 r=1  j=1
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s.t. Wl X y7 | =h(E)-T(E)x Yr=1,..,R,

J K
W( Yy Uf)’”) =7/ (hy— Tox) + X mp(h, =T, x)
k=1

Vi, Vr=1,...,R
J R )
> min Y g(v) Ep,y”]

yIz0 o r=1

s.t. W( r [ f p,y"f]) =h(€)-T(&)x,

Jj=ltr=1

™~

R
W( v/ EPryrj])="_’l/(ho_Tox)
j=1

r=1

K
+ Y my(h,—T,x) VI
k=1

= ¢ (x).
The last inequality above is due to taking a row aggregation of the constraints of (21) for
r=1,..., R with aggregating multipliers being the probabilities p,, along with using

that h(-) and T(-) are linear affine. This completes the proof. O

3.1. Convergence

Pointwise-convergence of bounds-based approximations to the expected recourse
function E¢(x), under partitioning the domain, is usually claimed by relying on weak
convergence of approximating probability measures, see for instance, Frauendorfer [9].
In particular, to claim convergence of the upper bound, consider a sequence of partitions
&%, v=1,2,..., where each " is described by a collection of (polyhedral) cells
{02, r=1,...,R,} of 0 satisfying (13)=(14) such that .5 C.57**+!. Suppose,

lim( max P"[w|wen,])=o. (22)

v \IgrgR,
Observe that the upper bound ¢,,(x) in (15) is the ‘expectation of ¢(x, w) with respect
1o a probability measure p defined on the discrete points (u, BYe 0, i=1,....1,
these points being optimally determined in the solution of (15). With p* denoting the
upper approximating probability measure at the partitioning iteration v, it follows due to
(22) that { p”} weakly-converges to PV, Then, due to Birge and Wets [2, Section 2.11],
from the compactness of 2 it follows that Ep,[¢] is both pointwise- and epi-convergent
o Ep ¢l

An important issue is whether a sequence of approximate first-stage solutions so
generated converges to a true optimal solution of the stochastic program (1). With regard
to the sequence of upper bounding functions ¢y (x) which pointwise- and epi-converge
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to E¢(x), one may apply Theorem 9 of Wets f17] to conclude that the sequence of
approximate first-stage solutions is guaranteed to belong to the set of optimal solutions.
That is, for the upper bounding solutions x;, of (6), we have Hm
x" is an optimal solution of the stochastic program (1).

Convergence argument for the convex lower bound in (12) is slightly complicated by
the fact that this lower bound generally does not correspond to an approximating
probability measure. To claim pointwise-convergence of $(x) to E¢(x), we first
reformulate the lower bound as follows:

v o= X =x" where

Proposition 3.4. The first/cross moment lower bound in (12) can be resrated as

#,(x) = inf{P(x, n.....0")ned,i= L....ny}, (23)
nl
where
L
P(x.n'sm)=min g52°+ ¥ g2
.z =1

st. We=h(E)-T(E)x,
Wzl='y, Vi=1,...,L,

! iD (24)
i —nz, =0, 2220 Vi=1,...,n,,
and y;="n(hy— Tox) + T m, (b, — Ty x) and q, is the l-th column of Q.
Proof. Since L,q(v'Y y/ = gL,/ + 9L ;v]/y’, (12) may be expressed as
L
¢ (x)=min g 2°+ ¥ g2/ (25)
2.z =1
s.t. Wz°=h(E)—T(E)x,
Wz'=v, VI,
Z(2)+9,

where Z(2) ={(y',..., y/): Ly =2° Lly’=2!, y/ >0, Vj}. Notice that () +
@ if and only if n'€ @ for i= l,...,n, where 0’ is defined by z!— 5iz°=0 for
I=1,..., L. Substituting this in (25) yields the desired result. O

Theorem 3.5. Ler 5%, v=1, 2,..., be a sequence of partitions where each " is
described by a collection of ( polyhedral) cells N(=F XO), r=1,...,R, of 2
satisfying (13)—(14) such that ¥ C.57v* !, Suppose

lim [rgmax '( max IIw'—wZII)]=0, (26)

y=®)r=1,..., w'.wZEH,
i.e., the diameters of the cells of the partitions become arbitrarily small. Then, the
sequence of lower bounding functions {$}(x)} is pointwise-convergent, i.e., Sor all x,

E¢(x) = lim ¢7(x).

Furthermore, the sequence {¢}(x)} is epi-convergent.
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Proof. Let ¢;(x) denote the (convex) lower bound on the cell £2,, r=1,...,R,, of 3
partition %”. Thus, the overall lower bound on E¢( x) corresponding to the partition
&Y is ¢7(x)=Lf:, p,¢;*(x). For notational simplicity, suppressing the superscripy
v, denote the conditional moments in cell {2, by E’, 7', and my,. Due to Propositiop

3.4,
p(x)=inf{®(x,n',....,0"):n €@, i=1,...,n}, @n
"

where @, is defined according to (24) for the cell (2. Let us first fix 7',..
Since

LMEe,

@(x,m,....m) =D (x,7',....7")
=[®(x.m.....0) = D(x,m,....m, n™)]
+ - +[<1>,(x, 7. 7°,....n") — O (x, 1;',...,1;”2)]
holds for any n € 6,
1D (x,m....,m) — D(x,1',...,n")|
<I®(x,7m,....n) = B(x,M,....m, ") |

-+ () = B (x )L
For sufficiently large v, since (26) implies that there exists small £> 0 such that

ln—n'll <& for any n € @,, the continuity of @, in 1’ implies that there exists small
g;> 0 such that

D (%, e ™) =B (x . L) < g
Vi=1,...,n,,
and thus,
1D (x,m,...,1) =P (x,n',....,n") | <e+ - te,, .
Defining 8, =&, + - -+ +¢, , this yields
S (x,n'....n")>P(x,m,...,7)— 8, Vneb,. (28)
Furthermore, it follows due to (24) that
®(x, e im) = min q(n) 2°
st. W2'=h(E") - T(E)x,
n,Wz°='y,’ Vi=1,...,L
> min g(n) Z° (29)
%20
s.t. Wz°=h(g_f')—-T(E’)x
=¢(x, &', 1), (30)

where [ =7%/(hy— Tox) + ZX_ m;(h, — T, x). The inequality in (29) is due to
dropping the constraints involving ;. Furthermore, since (£, n)— (&, Dl <&

s e
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* holds due to (26) for any (£, 1) € £2,, the continuity of ¢(x,.,.) implies that there exists

small 8,>0 such that | ¢(x, & 7)) — ¢(x, €', )| < 8, and hence, d(x, E", ) >
$(x, £, m)— 6, forany (£, n) € N,. Combining with (28) and (30), this yields

D (x,n',....0") = d(x, &, m) ~ (8, + 8,) V(& men,.
Since (31) holds for any fixed 7', ...
infimum w.rt. ' € 6,,

17(x) > ¢(x, 6. m) - (8,+8,) V(& m)en,. (32)
Since (32) holds for all cells £, in.s*, taking expectations and since v — o« ensures
that €0, 8, -0, and 8,0, it follows that lim, ¢ (x) > E¢(x) for all x.
However, since ¢}(x) is a valid lower bound on E¢(x), i.e., ¢ (x) < E¢(x), Vv, we
must also have lim, . ¢;(x) < E¢(x) for all x, thus proving the pointwise-conver-
gence of the lower bound.
Next observe due to Theorem 3.3 that {¢;(x)} is monotonic, and furthermore,
Ed(x) is lower-semicontinuous. These along with the pointwise-convergence of {¢;( x)}

satisfy the necessary conditions of Proposition 3.12 of Attouch and Wets [1], thus
ensuring that ¢, epi-converges to E¢p. 0O

(31)
»m"* € O, by referring to (27) and taking the

Now, applying Theorem 9 of Wets [17], one may conclude due to epi-convergence
that the sequence of first-stage solutions of the lower approximation (11) converges to
an optimal solution of the stochastic program (1).

There remain two issues to be addressed. First, how efficiently can the resulting
upper and lower approximations be solved at each partitioning iteration, and second,
strategies for refinement of a partition of {2, based on the information gathered from
previous partitioning steps. The former is discussed in the next section while the latter is
addressed in Section 5 under implementational details.

4. Decomposition of the approximations

A standard practice in applying bounds for sequentially approximating (1) is to first
apply the lower bounding strategy to determine an approximate first stage (lower
bounding) solution, x,, and then apply the upper bounding strategy on each cell of a
partition of (2, fixing x=x,. This approach is valid because (2) is assumed to have

¢ complete recourse. There are at least two advantages with this practice. First, the upper

bounding problem becomes separable by each cell of the partition. Secondly, it is
possible to examine how far apart the lower and upper bounds are for each cell (since
the same x solution is used). Then, based on the relative gap of the bounds (or some

- other measure; see Frauendorfer and Kall [11]), cells which need to be further parti-

tioned could be chosen.

Another important element in sequentially refining approximations is choosing a
suitable (geometric) partitioning scheme for the domain (2. While the first/cross

moment bound ¢, (x) in (15) and ¢,(x) in (12) are applicable under general (bounded)
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polyhedral {2, the implementation to be described in this paper incorporates a rectangy-
lar decomposition of (2. The main computational advantage is that in refining the
bounds on rectangular domains, partitioning planes can be chosen perpendicular to
coordinate axes to yield sub-rectangles. However, the major drawback of this approach
is that the number of extreme points in the (partitioned) domain increases exponentially.
In particular, the lower bounding computations are adversely affected by this due to the
necessity that an (improved) approximate x solution needs to be determined, which thus
results in an exponentially-growing lower approximation model with each partitioning
step.

In this section, it will be shown under rectangular domains that the lower approxima-
tion in (11)~(12) can be reformulated such that it affords no more than a linear growth
in model size with respect to the number of random variables. Furthermore, it follows
that the resulting structure in the lower bound permits efficient solution through Lp
decomposition techniques.

4.1. Lower approximation

The goal here is to take advantage of {2 being rectangular to cast the first/cross
moment lower bound (12) in a decomposable format that would necessitate solving
linear programs of size no larger than that of deterministic recourse problems. In its
present form, observe that ¢,(x) in (12) is (L + 1) times larger in the number of
constraints and 2* times larger in the number of variables than a deterministic recourse
problem. That the computations of this lower bounding model is affordable for larger
dimensions of uncertainty is evident in the following result:

Theorem 4.1. If O, the domain of m, is a multidimensional rectangle of the form 15,
(b9, b)), then (12) can be simplified as

L
elx)=min g2+ Lo(x ) (33)
st. Wz°=h(E)-T(£)x,
2°>0,
where
@il x, 2°) = min 97! (34)
sit. Wzl=y,

bo®< 7' <b,2°

yi=nhy— Tyx) + K m(h, ~ T, x), and q, is the I-th column of Q.
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Proof. Consider the equivalent formulation of ¢,(x) in Proposition 3.4. Since @ is
rectangular, 7' & @ in (23) is equivalent to by < 7 < b,,. Substituting this in (24)
yields the desired result. O

The lower bounding model (33) is amenable to solution by the standard L-shaped
method for solving two-stage linear programs; see Van Slyke and Wets [16]. Note that
¢,(x) in (33) now involves only L linear subproblems in (34), each of the size of a
deterministic recourse problem with simple bounds on variables. This linearity in L
allows solution of the lower approximation more efficiently for larger dimensions of
uncertainty, and in particular, would need only L processors in a parallel computing
environment. Finally, observe that in the absence of uncertainty in the objective
coefficients, i.e., g(n)=g,, the model in (33) retains only the first stage of the
minimization, which is the standard Jensen mean model.

Given a lower bounding solution x, of the model (11) where ¢,(x) is evaluated
according to (33), that the upper approximation in (6) can be cast in a decomposable
format is shown next. Also the steps of an algorithm for solving it is briefly sketched.

4.2. Upper approximation

In the upper bounding strategy (15), substitute for ¢ from the recourse function
definition (2) to obtain

I s
by(x,) = max i=Zl y20 j;p,,-q(ﬁ)y . (35)

354 A . A
Lo~ B'L;0,;=0 st Wy '=h(u') - T(u")x,

Defining

f{(p) = min ( r pi,q(v’)) Y’

j=1 (36)
s.t. Wy, = h(u') = T(u') x,,
thus it follows that
I
¢y (x,) = max Zf:( p). (37)
PEF

Since f,(p) is piece-wise linear concave in p, we propose to solve (37) by generating
- these linear pieces iteratively. This is the fundamental idea in the L-shaped decomposi-
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tion of two-stage linear programs. The resulting decomposition algorithm to solve the
upper approximation is as follows:

Outline of solution method:
® Begin with any feasible p' € & (using the phase-I method) and set k = 1.
@ Step 1. At some iteration k, given p = p*, solve the i-th LP subproblem in (36).
There are two cases:
(a) Eq. (36) is unbounded for some i:
For a direction of unboundedness o ¥, add the boundedness cut

Z(‘I(Uj)o'i'k)l’ij>0 (38)
J
to the master LP problem (40) and go to Step 2.
(b) Eq. (36) is finire for all i
For an optimal solution y™* of (36), add the optimaliry cut
6~ X (q(v/)y"*)p,;<0 Vi=1,...,1 (39)
J
to the master LP problem (40) and go to Step (2).
@ Step 2. Solve the master problem:
F¥(x,)=max Y. 6, (40)
p.0 i

s.t. Z(q(uj)'a'i”)p,j>0, r=1,...,k,
j
8,— L(a(v/) y"")p; <0,
j

r=1,....k Vi,
pPEZ.

Go to Step (1).

@ Optimality Criterion:
At some iteration k, for an optimal solution (8%, p*) of (40) and for this p*, in
Step 1 under case (b), for LP subproblem optimal solutions y**, if it holds that

0! < L oka(v))y™ Vi, (4)
i
then STOP with ¢, (x,) = F*(x,).

Details of the derivation of the above algorithm is skipped due to its similarity to the
standard L-shaped algorithm. What is important to notice here is that each of the LP
subproblems is of the size of a deterministic recourse problem while the master linear
problem, without any added cuts, has only (K + 1)*(L + 1) constraints and { *(J + 1)
variables, thus permitting solution of the upper approximation for larger dimensions of

. 2

SUVSITHIHNURE SINITIO] LFI-32LD St

| . uncertainty. Moreover, it becomes possible to parallelize subproblem solution on 7

number of processors.

5. Implementation of first / cross moment bounds

Computational results using an implementation of the preceding first/cross moment
bounds for rectangular domains are reported here. These results pertain to stochastic
programs having complete recourse, generated randomly with stochastic right hand sides
and stochastic objective coefficients. The code by Kall and Keller [15] was used to
generate these problems with a slight modification to include stochastic objective
coefficients such that the resulting recourse problems are feasible and bounded for any
realization of the random vector in the prescribed rectangle. These rectangles are
specified by lower and upper limits a,, and a,, on ¢ coordinates and b, and b, on 7
coordinates.

In the prescribed rectangle {2, an (empirical) probability distribution is created by
generating a (large) number of discrete realizations of w. This is done by assigning
realizations to the 2¥*% extreme points of £ and then taking (random) convex
combinations of these extreme realizations. Thus, the stochastic problems so generated
may be viewed as having random vectors described by a large number of (randomly
generated) equally-likely scenarios. Elements of H, T, and Q are generated according
to (5) for user specified dimensions, with all deterministic coefficients being generated
in the range [~ 10, 10].

The experimental code RAWFC (Rectangular Approximation With First and Cross
moments), written in Fortran 77, generates two-stage stochastic programs according to
user specifications and solves them using the first /cross moment lower approximation
model in (33) and the upper approximation model in (37). It uses IBM’s OSL subroutine
to solve all linear programming subproblems when evaluating the approximations. In
this experimental code, the number of scenarios has a maximum limit of 6000, along
with a maximum {2 dimension of 8. Thus, for this maximum allowable size, each of the
8 basic random variables may be viewed as being allowed to take 3 possible outcomes
on average. Also the code allows partitioning of the rectangular domain {2 along a
specified coordinate direction to yield sub-rectangles, up to a maximum of 20 such

. partitions.

At an intermediate partitioning iteration, three types of questions arise: first, which
cell or cells of the current partition should be further sub-divided?; secondly, once a cell
is chosen, should it be sub-divided by partitioning a coordinate of £ or 7?; and finally,
what should be the partitioning point for the chosen coordinate?

Recall from Section 4 that the standard practice is to first solve the lower bounding
approximation and then evaluate the upper bound for this lower bounding first-stage
solution, x;. Consequently, the first issue may be resolved by examining the gap
between the lower and upper bounds and choosing a cell £2, of the current partition 5”

= of (2, according to the criterion

(42)

r=1,...,
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where v is the partitioning iteration index. While there are alternative criteria in the
choice of a cell (see Frauendorfer and Kall [11]), the criterion in (42) chooses the
partitioning cell having the maximum weighred difference of lower and upper bounds,
being weighted by the probability associated with the cell.

For notational convenience, we suppress both the partitioning iteration index and the
index for cell number, and thus in the ensuing discussion, {2 denotes the current cell (or
domain) to be partitioned. In order to determine whether to partition a ¢ coordinate of
an 7 coordinate, first consider indexing the following (K + L + 1) extreme points of

W0 = (uo, Uo) = (aIO’ Qyp5e-45Qgos blo’ b20""’bL0)
and
(ul’ UO) = (alo,...,a”,...,a,(o, blO’ bzov""bLO)
. for t=1,....K,
(uOy l)') = (aIO""’aKO’ blO’ bzo""’b(’_K)l,“”bLo)’

forr=K+1,....,K+L.

As in Frauendorfer and Kall [11], the degree of nonlinearity of the recourse function ¢
between the two points w® and w' can be evaluated, respectively, by considering dual
solutions (for r=1,..., K, and primal solutions for t=K + 1,..., K + L) of the LPs
defining ¢(x,, w®) and ¢(x,, w').

We use the following approach. Solve the LP determining ¢(x,, w?) and let y° and
70 be its optimal primal and dual solutions, respectively. Then, for each 1= 1,...,K,
under sensitivity analysis, determine the allowable increase and the allowable decrease
for all constraint right-hand sides such that the current dual solution 7% remains
optimal. Similarly, for each t=K + 1,..., K + L, determine the allowable increase and
decrease for each objective coefficient such that the current primal solution y° remains
optimal. These are already available from the OSL subroutine on return. Then, for each
w', applying the /100% rule in sensitivity analysis in linear programming (for multiple
changes in the right-hand side or objective coefficients) ~ see Bradley et al. [3] -
determine the set & of indices 7 such that ¢ is linear between w® and w'. For the ease
of exposition, we assume that .7 is empty and thus for all indices in & ={1,..., K + L},
¢ is nonlinear. Consequently, solve the linear programs determining ¢(x,, w') for
t€9J . For t< K, let ' be its dual solution and for ¢t > K, let y' be its primal solution.

For indices 1€, the coordinate axis along which ¢ is mostly nonlinear is
determined by approximating the function ¢ between w® and w' by the two-piece linear
function ¢, resulting from the solutions of ¢(x,, w®) and ¢(x,, w'); see Fig. 1 for the
case 1 < K. Thus, ¢, is convex for | <1< K and concave for K+ 1 <r< K +L. The
degree of nonlinearity associated with each ¢, is assessed using the measure terminal-
nonlinearity defined by

min {(7° — w)[h(uy) — T(up) x,] .
a:={ ("= m)[h(u')~T(u")x])
min{g(v")(»° - »'), ¢(v°)(y' — )’0)}

(43)

for t <K,

for t> K.

ity, denoted 4,, as the difference of the hei
- the (conditional) mean point £, for ¢ <

: where i’ = (q,,.
© let

~ Prior to discussing strategies for partitioning an  coordinate

i determine the intersection point of the two linear pieces defining y;
. « - e
easily show that this intersection point is

P2 N At

For the cell 2 (r=1,..
- (42) for further sub-divisio

Strategy 1: For 1, which is the solution of arg max
: at the conditional mean-point @, (of cell 02).
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Fig. I. Two-piece linear approximation.

Observe that (43) is the measure introduced in Frauendorfer and Kall [11]
StOC}.laStiC programs with random right-hand sides. Furthermore, the la
considers terminal-nonlinearity among all pairs of adjacent verticés. He
only those t.hit are adjacent to the vertex w, Also define the measure

when solving
tter reference
re, we consider
mean-nonlinear-
ghts of the two linear pieces defining ¢, at
K (or,_, for t > K); see Fig. 1. Defining
—_ (@, v if1 <t<K,
(w',5")

fK+1<r<K+1L,

v & agg)for t< K and B' = (b

103+ Mo gs--., o) for 1> K,

= {I("l_ 7% h(a') - T(#')x, |l for t<Kk,

(o) (y' = y9)I (44)

for 1> K.

it is necessary to
see Fig. 1. One can

£ (7%= ) [(ho~ Tyx,) + Lo (= Tix)ay]

!

(= 7k~ T,,) LR ®
: and
_ (qo + E,H_K‘hblo)()’o -y K
!
q,_K(y'—yo) R <t<K+L. (46)

-» R,) chosen from the current partition .%¥ of {2 according to
n, the coordinate axis to be partitioned to yield sub-rectangles

is chosen by one of the following partitioning Strategies:

1 4,, partition the coordinate w,




314 N.C.P. Edirisinghe, W.T. Ziemba / Mathemaical Programming 75 (1996) 295--325

Strategy 2: For 1, which is the solution of arg max, . » 4,, partition the coordinate ©,
at the intersection-point &, .

Strategy 3: For t, which is the solution of arg max, . »{A,/4,}, partition the coordinate
w, at the conditional mean-point w,.

Strategy 4: For 1, which is the solution of arg max,c »{AA, — (1 - A)A}, for some
A €0, 1), partition the coordinate w, at the conditional mean-point @, .

Under a sub-simplicial refinement of the domains Z and @, Frauendorfer []0)
utilized Strategy 1, but with partitioning at the mid-point of the corresponding edge. We
use the conditional mean point because it probabilistically balances the scenarios in the
resulting two cells. However, with partitioning at the (conditional) mean-point, it is
preferable to have smaller mean-nonlinearity 4, as it implies that the partitioning point
is closer to the intersection point @,. In the latter event, in case ¢ coincides with ,, the
lower and upper bounds in the subsequent iteration can be expected to become much
closer. This indeed is the motivation for Strategy 2. Strategies 3 and 4 attempt to
trade-off mean-nonlinearity with terminal-nonlinearity in two different ways. In the
numerical experiments, we investigate Strategy 4 with A = 0.5.

The code RAWFC also uses the following cell redefining strategy in obtaining the
new extreme points after partitioning a cell. When partitioning a cell with a number of
discrete realizations (scenarios) in it, the resulting cells may be reduced in volume by
considering the smallest rectangle containing all the scenarios; see Fig. 2. Since the
(unnecessary) zero probability spaces are removed, the resulting bounds can become
tighter. Table 1 reports the effect of cell-redefining (C-R) with each coordinate axis
being partitioned (at its conditional mean point) from the case of ‘‘no partitioning’’. As

partitioning plane

\l
! =
cell B; : i ocell @,
: . <
q . I .
- b )
..
. | ¢
AP ) | .
L
~ |
Q

Fig. 2. Redefining cells of a partition.

N.C.P. Edirisinghe, W.T. Ziemba / Mathematical Programming 75 (1996) 295-325

315

Table !

Effect of the Cell-Redefining strategy. m, =m, =5, n,=n, =10, K= [ = 2, # scenarios = 625

Partition axis No.C-R with C-R

LB UB LB UB

no partition 1008.451 8501.089 1008.451 8501.089

£ 2742.453 7316.946 2742.453 7155.438

£ 3334557 7316.64] 3334.557 7263.926

m 1185.088 8437.903 1185.091 8437.799

h 1171.392 8483.692 1172.667 8483.684

can be seen from (33) and illustrated by the numerical example in Table 1, the C-R
strategy can improve the lower bound only when 7 coordinates are partitioned.

In view of the discussion on convergence of approximations in Section 3.1, to ensure
that the volumes of the cells of partitions become arbitrarily small, one may be
motivated to mix the foregoing partitioning strategies with one that chooses a partition-
ing coordinate having the longest edge, and then, sub-dividing the cell at the mid-poinr
of this edge. This was done with simplicial decompositions in Frauendorfer [10, p. 121},
However, with discrete scenarios and C-R strategy in use, there seems to be only little
advantage in doing so, since zero probability spaces are successively removed from the
resulting partitions. This is also verified in our experiments (although not reported here)
that with partitioning at the mid-point the improvement in the relative gap seemed very
slow, specially in the initial iterations, compared to partitioning at the conditional mean
or the intersection-point.

In this preliminary investigation, we generate complete recourse problems with
relatively small number of constraints and variables, but allow the number of scenarios
to vary depending on the number of (basic) random variables in the problem. For
instance, with 6 random variables, to represent a case where each is allowed to take 4
different outcomes, 4096 dependent scenarios are generated randomly. The problem
characteristics in Table 2 will be used for the illustration here. In particular, we wish to
pursue the sensitivity of the (rectangular) first/cross moment bounds on partitioning

Table 2

Randomly generated example problems

Problem # K L (m,, n,, my, n,) Uncertainty * Scenarios
1 2 3 (5,10, 5, 10) [—1,1]° 1024
2 4 1 (5, 10,5, 10) [—1,1] 1024
3 2 3 (5, 10, 5, 10) [-5,5] 1024
4 4 1 (5, 10,5, 10) [-5,5] 1024
5 3 3 (3,5,3,5) (-1 4096
6 3 3 (3.5,3,5) [-5,5] 4096
7 2 2 (10, 20, 50, 70) [-5,5] 625
8 1 1 (50, 100, 50, 100) [-5.5] 100
9 2 2 (10, 20, 10, 20) [-5,-5) » €

* Measured by lower and upper limits of random variables.
® Al random variables have the same interval,
€ Number of scenarios is increased from 128 to 4096.



316 N.C.P. Edirisinghe, W.T. Ziemba / Mathemarical Programming 75 (1996) 295-325

Table 3

Effect of partitioning strategies — Problem #1

Partitioning Partition cell LB lay—xp*tits UB Relative

strategy (coordinate) gap (%) *

no partition 856.331 1246.739 45.59

(1112.073)"®

1 1(£,) 856.520 0.00 1122.138 31.01
3(&,) 857.884 1.94026 1022.648 19.21
2(¢) 859.324 0.00 970.396 12.93
5(&,) 883.610 0.42754 955.705 8.16
T(E) 899.516 0.00 941.553 4.67

2 1(&,) 884.602 2.36779 1024.811 15.85
2(¢) 906.708 0.00 914.620 0.87

3 1(¢) 865.632 0.00 1156.156 33.56
3(&y) 872.572 1.06378 1035.655 18.69
2(¢,) 872.573 0.00 992.121 13.70
7(¢,) 872.599 0.00 967.059 10.83
5(¢,) 875.489 1.30401 939.587 7.32
4(¢) 892.966 0.00 924.435 3.52

4 1(£) 865.632 0.00 1156.156 33.56

(A=0.5) 3(¢) 894.231 0.56233 1044.496 16.80

2(¢&) 894.232 0.00 989.721 10.68
7(¢,) 894,317 0.41588 949.160 6.13
5(¢,) 900.055 1.38958 923.790 2.53

grand-LP: 5125X 10250 LB Ip (max.) ¢: 145X 570 UB Ip (max). ¢: 5252

2 Defined by [(UB-LB)/LB1X 100%.

® When solving the upper bound (6) for its x solution.

¢ The maximum size of the lower bounding LP solved for computations in this table.
4 The maximum size of the upper bounding LP solved for computations in this table.

strategies (with using the C-R strategy) when both the dimension of uncertainty as well
as the range of uncertainty are enlarged.

In Tables 3—9, improvement in the current x solution, x,, is also reported for each
partitioning iteration. The UB column reports the upper bound when the solution x, is
used. For the ‘“‘no partitioning’’ case, the upper bound when solving the model (6) for
its solution x, is provided within parentheses. Cells in a partition are numbered
consecutively so that partitioning the original domain (i.e., cell 1) yield cells 2 and 3,
with cell 2 referring to the lower side of the coordinate being partitioned. The code
automatically terminates when the relarive gap of the bounds is less than 5%; however,
for the reporting purposes, no more than 8 partitioning iterations are tabulated although
20 such iterations are allowed in the code.

As it develops, Strategy 2 with partitioning at the intersection points seems to work
best, in our limited computational experience. As in Problem #1 (see Table 3), Strategy
2 is able to take the best advantage of the coordinate that shows the maximum
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Table 4
Effect of partitioning strategies - Problem #2
Partitioning Partition cell LB Ixy = xr* il UB Relative
strategy (coordinate) gap (%)
no partition 144.795 222.192 53.45
(213.492)
1 1(&,) 146.086 0.01835 205.486 40.66
3(&,) 146.187 0.00 193.677 32.49
2(¢) 146.685 0.14599 192.906 31.51
5(&y) 147.281 0.00 190.134 29.10
6(&5) 149.331 0.00 187.662 25.67
7(£) 149.331 0.00 185.328 24.11
4(&y) 150.093 0.14599 182.693 21.72
9(£) 151.051 0.00 180.553 19.53
2 1(£,) 145.795 0.00876 217.473 49.19
2(&) 146.814 0.03731 211.919 4435
4(&y) 149.946 0.06442 186.369 24.29
6(&,) 153.280 0.70188 184.561 20.41
7(&) 153.722 0.00 181.259 1791
10 (&) 153.735 0.00 177.972 15.77
9(&,) 154.316 0.30877 175.247 13.56
3(¢) 158.062 0.00 172.365 9.05
3 1(&,) 151.539 0.79543 226.668 49.58
3¢ 151.745 0.24114 210.367 38.63
2(&,) 151.745 0.00 198.251 30.65
5(¢) 152.799 0.00 197.079 28.98
7(&y) 152.799 0.00 190.438 24.63
4(&;) 153.242 0.31429 185.418 20.99
8(¢&,) 153.242 0.00 183.029 19.44
6(£) 153.242 0.00 181.774 18.62
4 1(&) 151.539 0.79542 226.668 49.58
(A=0.5) 3(&y) 151.629 0.12761 216.413 273
2(¢&) 151.629 0.00 203.815 34.42
5(¢) 152.233 0.42874 195.553 28.46
7(&y) 152.233 0.00 192.224 26.27
4(¢) 152.286 0.06973 190.120 24.84
8(¢&,) 152.286 0.00 187.820 2333
6(¢,) 152.285 0.00 186.090 22.20

grand-LP: 5125 X 10250 LB Ip (max.): 95X 190 UB Ip (max.): 122X 170

terminal-nonlinearity, compared to partitioning at the conditional mean of the same
coordinate. Also it developed that the range of uncertainty or the dimension of
uncertainty has only little effect on the performance of Strategy 2, while Strategy 3
displayed the poorest performance on average. Comparison of Strategy 1 and 2 on
slightly larger problems is given in Table 9.
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Table 5

Effect of range of uncertainty — Problem #3

Partitioning Partition cell LB lxf—xr* ', UB Relative

strategy (coordinate) gap (%)

no partition 2178.092 3542.409 62.64

(3072.993)

1 1(¢) 2224.170 0.01891 3209.889 4432
3(¢) 2327952 0.00 3028.499 30.09
2(¢,) 2422207 1.46132 2654.958 9.61
5(¢) 2457.682 0.01311 2610.022 6.29
4(¢y) 2472582 0.03360 2539.100 2.69

2 1(¢) 2341.368 0.01183 3037.838 29.75
2(¢,) 2447920 2.20355 2683.243 9.61
5(¢;) 2468.124 0.61415 2567.749 4,04

3 1(¢,) 2334.306 1.37424 3039.043 30.19
2(¢) 2339.297 0.20459 2855.773 22.08
3(¢) 2339333 0.00188 2688.268 14.92
5(¢) 2395.096 0.27543 2631.221 9.86
7(¢) 2447.931 0.09590 2561.316 4.63

4 1(£) 2224170 0.01891 3209.889 44.32

(A=0.5) 3(¢) 2327.952 0.00 3028.499 30.09

2(¢) 2422207 1.46132 2654.958 9.61
5(¢,) 2436.839 0.00 2618.432 7.45
4(&,) 2447300 0.13528 2567.738 4.92

grand-LP: 5125 % 10250 LB Ip (max.): 125X 490 UB lp (max.): 52X 52

As for x solutions, much of the adjustment in the approximate x solution seems to
occur in the initial iterations and thereafter only minor changes take place. This raises
the question whether convergence of the x solutions takes place much earlier than that
of the bounds. If it is so, one may use it to the computational advantage by performing
multiple partitions, i.e., partitioning multiple cells for the current lower bounding
solution x;.

To demonstrate the effectiveness with multiple partitioning, we use Problem #9 (see
Table 1) which has a starting set of 128 scenarios. We successively increased the
number of scenarios by adding more scenarios to the existing set, up to a total of 4096
scenarios. These problems were solved by RAWFC using partitioning strategy 2 and
multiple partitioning of cells. We arbitrarily fixed the multiple-partitioning strategy to be
the one which picks all cells whose 8({2,), the weighted-difference in (42), is within
60% of the max,.,  .{8(£2,)}. These problems were solved until the maximum
partition-iteration limit of 20 is reached in RAWFC. The grand-LPs corresponding to
these stochastic programs were also solved to optimality using OSL. All tests were Tun
on a SUN SparcStation 2 and the CPU times are compared. It is evident from the results
in Table 10 that RAWFC determines near-optimal solutions in a fraction of the time
required to solve the grand-LP. Although the grand-LP cpu time corresponds to solving

s A ——
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Table 6

Effect of range of uncertainty — Problem #4

Partitioning Partition cell LB Wxf—xptUl, UB Relative

strategy (coordinate) gap (%)

no partition 1023.689 3100.624 202.89

(1861.573)

1 1 (fz) 1040.383 2.11049 2299015 120.98
3(¢) 1040.901 0.00 2235983 114.81
2(¢5) 1044.882 0.17584 2114.645 102.38
4(¢,) 1057.836 222791 1611.486 52.34
5(¢,) 1072.128 0.00 1556.558 45.18
7(¢) 1072.129 0.00 1532.228 4292
6(¢) 1072.483 0.15489 1516.282 4138
9(¢,) 1105.535 0.30643 1533.398 38.70

2 1(£,) 1079.642 0.93756 2657.161 146.12
2(¢,) 1089.890 1.13427 1974.815 81.19
4(¢) 1109.554 0.00 1930.428 73.98
6 (fz) 1112.405 0.00 1853.424 66.61
8(¢,) 1116.665 0.00 1793.880 60.65
5(¢) 1132.132 0.91346 1610.099 4222
3(¢) 1166.390 1.55856 1390.326 19.20
12 () 1180.348 0.49274 1381.181 17.02

3 1(&) 1044.587 1.84099 2472.550 136.70
2(¢) 1059.750 2.46087 1838.251 73.46
3(¢5) 1059.802 0.00 1795.004 69.37
7(¢) 1060.290 0.00 1769.209 66.86
4(¢5) 1060.290 0.00 1736.550 63.78
5(&,) 1060.445 0.144388 1697.038 60.03
6(¢,) 1060.445 0.00 1667.349 57.23
8(¢,) 1063.502 0.00 1636.700 53.90

4 1(£5) 1034.106 0.79917 2385.687 130.70

(A=05) 3(¢) 1039.594 0.93251 2170.292 108.76

2(£) 1044.537 0.20920 2030.037 94.35
4(¢,) 1061.535 1.98828 1663.134 56.67
5(¢y) 1061.658 0.00 1617.429 52.35
AED) 1063.568 0.17501 1588.981 49.40
6(¢) 1063.589 0.01192 1562.897 46.95
9(¢,) 1088.189 0.62206 1481.365 36.13

grand-LP: 5125 X 10250 LB Ip (max.): 95X 190 UB lp (max.): 112X 170

until optimality is reached, a premature termination with an objective value as good as
the best upper bound (produced by RAWFC) still required much larger cpu time. For
instance, in the case of 1024 scenarios, to obtain the best RAWEFC-upper bound of
2805.28, over 95% of the total OSL-iterations (which produces the grand-LP optimal
value of Z* = 2676.32) are required. Notice that the current lower bounding solution
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Table 7

Effect of partitioning strategies —~ Problem #5

Partitioning Partition cell LB Ixy—xi*'ls UB Relative

strategy (coordinate) gap (%)

no partition 80.812 243.986 201.92

(120.181)

1 1(£,) 84.968 0.49872 181.327 113.41
2(¢&;) 91.518 0.73575 121.086 32.31
3(¢) 91518 0.00 120.710 31.90
4(¢y) 92.759 0.14974 113.123 21.95
7(¢9 92.759 0.00 111.025 19.69
6(¢)) 92.759 0.00 108.727 17.22
5(ED 92.759 0.00 106.904 15.25
8(¢,) 93.275 0.06250 105.664 13.28

2 1(£,) 82221 0.16931 203.022 146.92
2(¢y) 90.252 092912 125.051 38.56
4(¢y) 90.960 0.07435 121.436 33.50
6(¢&,) 92.755 0.20943 112304 21.07
5(&) 92.755 0.00 107.650 16.06
9(¢) 92.755 0.00 105.165 13.38
3D 93.122 0.00 103.704 11.36
8(¢&,) 93.498 0.04732 102.950 10.11

3 1(&,) 89.706 1.05385 129.837 4.73
2(¢y) 92.024 0.24927 116.008 26.06
3(¢) 92.023 0.00 112.243 21.97
4(&y) 92.981 0.11209 108.895 17.12
T(¢) 93.173 0.00 106.472 14.27
5(&) 93.172 0.00 103.814 11.42
8(¢&,) 93390 0.02172 103.555 10.89
6(&,) 93.389 0.00 102.157 9.39

4 1(&y) 89.706 1.05385 129.837 44.73

(A=0.5) 2(&,) 92.024 0.24927 116.008 26.06

3(¢) 92,023 0.00 112.243 21.97
4(&y) 92.981 0.11209 108.895 17.12
7(¢) 93.173 0.00 106.472 14.27
5(¢) 93.172 0.00 103.814 11.42
8(¢,) 93.390 0.02172 103.555 10.89
6(£5) 93.389 0.00 102.157 9.39

grand-LP: 12291 X 20485 LB Ip (max.): 111X365 UB lp (max.): 88 X 56

from RAWFC is within 5% of the optimal solution of the latter problem, although the
relative gap of RAWFC-bounds is 8.8%. Also it appears that as the number of scenarios
is increased, the performance of RAWFC does not deteriorate, but rather, it displayed an
enhanced performance.

The preceding numerical exercises ascertain that while a stochastic program may be
described with a large set of scenarios, by clustering scenarios in an appropriate manner,
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Table 8
Effect of range of uncertainty - Problem #6
Partitioning Partition cell LB xf—x* M, UB Relative
strategy (coordinate) gap (%)
no partition 871.748 2064.859 136.864
(1516.065)
I 1(£5) 1022.027 0.11975 1435.897 40.50
2(¢&,) 1055.916 0.02838 1393.596 31.98
3(¢y) 1055.916 0.00 1312.768 2433
7(¢) 1059.123 0.00 1292.667 22.05
4(¢) 1064.698 0.01235 1281.754 20.39
5(¢) 1064.698 0.00 1240.955 16.56
10(¢,) 1070.967 0.00586 1226.731 14.54
8(¢,) 1073.605 0.00 1211.105 12.81
2 1(&3) 961.983 0.07162 1514.698 57.46
2(¢,) 1055.810 0.07643 1341.693 27.08
5(&) 1055.807 0.00 1268.042 20.10
3(¢) 1070.638 0.00 1226.240 14.53
4(¢) 1072.558 0.00190 1220.183 13.76
11(¢) 1074.079 0.00132 1217.744 13.38
13(¢) 1075.686 0.00137 1215.930 13.04
15(€) 1076.663 0.01640 1215.886 12.93
3 1(&,) 1022.027 0.11975 1435.897 40.50
2(&y) 1055.916 0.02838 1393.596 31.98
3(¢y) 1055.916 0.00 1312.768 24.33
7(&y) 1067.710 0.00 1274.824 19.40
4(¢,) 1069.183 0.00373 1270.639 18.84
5(£) 1069.184 0.00 1230.382 15.08
10 (£,) 1072.660 0.00708 1229.15 14.59
9(¢) 1080.479 0.00 1216.974 12.63
4 1(¢&,) 1022.027 0.11975 1435.897 40.50
(A=0.5) 2(¢y) 1055.916 0.02838 1393.596 31.98
3(&y) 1055.916 0.00 1312.768 2433
7(¢) 1059.123 0.00 1292.667 22.05
4(&) 1060.734 0.00373 1288.458 21.47
5(¢) 1060.735 0.00 1248.201 17.67
10(£,) 1064.471 0.00708 1246.892 17.14
8(&,) 1067.048 0.00 1231.277 15.39

grand-LP: 12291 X 20485 LB Ip (max.): 111X 365 UB Ip (max.): 88 X 56

representative scenarios may be determined for each cluster in order to compute
near-optimal solutions effectively. This is illustrated for Problem #2 in Figs. 3 and 4,
respectively, for Strategies 1 and 2. The ‘boxes’ in these figures represent the final cell
numbers (with the number of scenarios in parentheses) at v = 8. Observe that even with
a cluster of as large as 558 scenarios in cell 8, Strategy 2 yields a relative gap of about
9% compared to a gap of 20% with Strategy 1, after § clustering steps. Thus, what is
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Table 9

Strategies 1 and 2 on larger problems - Problem #7 and Problem #8

Problem Partition LB Ixy— 'l UB Relative
cell (coord.) 2ap (%)

#7 no partition 237801.594 336920.640 41.68

(284051.469)

1(¢) 238006.141* 0.60591 283427.226 19.08
3(¢) 238639.844 3.60666 261606.010 9.62
5(¢) 244671.875 3.37458 252938.194 3.38
1(E) 238756.781° 0.26646 271942337 13.90
2(¢) 238963.719 0.25248 259744.366 8.70
3(¢) 242432875 19.99126 253447.170 4.11

grand-LP: 31260X 43770

#8 no partition

1(¢)
3(¢)
5(¢)
2(¢)

1(£)
2(¢)
3(¢)
4(¢)

grand-LP: 5050 X 10100

LB Ip (max.): 610X 1140

25357.725

29853.332 ¢ 18.28679
33303.734 20.46054
36207.090 1.58927
37587.883 481065
31046.775 ¢ 34.19303
35362.020 5.14173
37182.500 631890
37551.168 5.77253

LB Ip (max.): 550X 1100

UB 1p (max.): 216 X 289

138993.720 448.13

(54866.770)
76887.134 157.55
47013.183 41.17
40571.068 12.05
39310.941 458
50674.521 63.22
45535.817 28.77
40 196.565 8.11
39031.668 3.94

UB Ip (max.): 104X 204

* These figures are for Strategy 1.
® These figures are for Strategy 2.
¢ These figures are for Strategy 1.
¢ These figures are for Strategy 2.

Table 10

Effect of increasing # of scenarios with multiple partitioning — Problem #9

# scen. Relative # multiple RAWFC grand-LP size grand-LP

gap (%) partition iter. * CPU sec. CPU sec.®

128 3.95 6 390.61 190X 2580 220.88
256 9.89 6 339.71 2570X 5140 1042.19
512 7.08 6 384.41 5130 10260 2396.48

1024 8.80 6 435.13 10250 X 20500 12447.50

2048 2.80 5 333.15 20490 X 40980 . €

4096 3.26 5 136.60 40970 X 81940 *

* Total number of single partitions reached the allowable maximum of 20.
b Solving grand-LP to optimality using OSL.
€ Not solved due to memory limitations.
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Fig. 3. Scenario clustering of Strategy 1, Problem 2.
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paramount in bounds-based sequential approximation methods is the proper choice of a
refinement procedure to cluster scenarios based on partitioning the underlying domain.
The strategies described in this section illustrate this point.

Cell 1 {1024}

TN

3 (16)

2 (1008)

ANIVAN

4 (1006) 16 (€)
6 (831) 7 (168)
9 (273) 10 (164) T (&)

Fig. 4. Scenario clustering of Strategy 2, Problem 2.

17

8



6. Concluding remarks

It was demonstrated how stochastic programs can be solved using bounds-bageq
approximations, in this case, utilizing rectangular domains and first/cross moment
bounds. For this purpose, monotonicity and convergence of the bounds were first
established, and then decomposition of the bounding computations was pursued for
assuring efficiency in solution. In particular, the lower bounding computations enjoy the
partitioning convenience offered by rectangular domains while affording only a linear
growth in the model size with each partition.

However, evaluation of the upper approximation still involves an exponential number
of sub-problems which may offset the partitioning convenience in rectangular domains,
especially when solving problems with larger dimensions of uncertainty. One possible
remedy is to restrict the domains to be simplices, thereby assuring a linear growth in the
upper bounding model size with partitioning. Frauendorfer [10] derived such simplicia]
bounds which can be computed without any optimization on probability measures, and
thus, the resulting approximations too possess the required decomposable structure,
However, refining these approximations using a partitioning procedure is more cumber-
some compared to that in rectangular domains. See Frauendorfer [10] for details of
performing a simplicial decomposition of the domains for refinement of these bounds,

Alternatively, Edirisinghe [4] derives simplicial bounds on the Joint domain using the
complete second moment information, which are thus generally tighter than the
first/cross moment approximations on simplicial domains. Edirisinghe and You [7]
report an implementation of these approximations for solving two-stage stochastic
problems more efficiently.
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