(33)
(34]
(35]
36]
(37]
(38]
(39)
[40]

[41]

[42])

[43]

[44

—

(451

[46]

[47]
[48]

[49]

(501

L.F. Escudero et al. / Parallel computation and multistage networks

J.M. Mulvey and H. Vladimirou, Stochastic networks, optimization models for investmen lanm:
Annalshof Operations Research 20 (1989) 187—217. P Anning,
S.S. Nielsen and S.A. Zenios, A massively parallel algorithm for nonlinear stochastic
problems, Operations Research 4 1(1993)319 ~337. fetwork
M.C. Noel' and Y. Smeers, Nested decomposition of multistage nonlinear programs with
Mathematical Programming 37(1987)131 - 152. recourse,
M.VE Penjelra and L.M.V.G. Pinto, Multistage stochastic optimization applied to energy plani
Mathematical Programming 52(1991)359—375. planning,
R.T. Rockz.afellar and R.J-B Wets, Scenario and policy aggregation in optimization under up
Mathematics of Operations Research 16(1991)119-147.
A. Ruszczyriski, Interior point methods in stochasti i
g pol in stochastic programming, Report WP-93.8, 11ASA, Vienna,
A. Ruszczynski, Parallel decomposition of multista i i

- . ge stochastic programs, Math
ming 58(1993)201-208. Proe ematical Progam.
A. Sartenaer, On some strategies for handling constraints in nonlinea imizati

s r optimization, Ph. i

Department of Mathematics, FUNDP, Namur, Belgium, 1991. - Thesis,
G. St'ephanopoulos and W. Westerberg, The use of Hestenes’ method of multipliers to resolve dya
£aps in engineering system optimization, J imizati icati
LA gsy: ptimization, Journal of Optimization Theory and Applications 15(1975)
Ph.L. Toint and D. Tuyttens, On large-scale nonlinear network optimization, Mathematical Program
ming 48(1990)125-159. .
R.J. Vand.erbei and T.J. Carpenter, Symmetric indefinite systems for interior point methods
Mathematical Programming 58(1993)1 -32. '
R. Van Slyke and R..!»B Wets, L-shaped linear programs with applications to optimal control and
stochastic programming, SIAM Journal on Applied Mathematics 17(1969)638—-663.
R.J-B Wets. Large-scale linear programming techniques in stochastic programming, in: Numerical
Tecigzslq:;es for Stochastic Optimization, eds. Y. Ermoliev and R.J-B Wets, Springer, Berlin, 1988
oo 65 00 . ,
D. Yang' ar'ld SA. Zenios.. On a scalable parallel implementation of interior point algorithms for
stoyhastac llr'lear programming and robust optimization, Parallel Optimization Colloquium, Laboratoire
PRiSM, Université de Versailles, Versailles, France, 1996.
S.A. Zem'os (ed.), I"Ynancial Optimization, Cambridge University Press, Cambridge, 1993.
S.A. Zenios, Massively parallel computation for financial planning under uncertainty, in: Very
;.ggge-scale Computation in the 215t Century, ed. J.P. Mesirov, SIAM, Philadelphia, 1991, pp. 273-
S.A. Zenios, A model for portfolio management under uncertainty for fixed-income securities,
Annals of Operations Research 43(1993)337-356.
S.A. Zémos, Asset/liability management under uncertainty for fixed-income securities, Annals of
Operations Research 59(1995)77-179.

Certainty,

L.

© pnnals of Operations Research 90(1999)161 184 161

E/PI-based importance sampling solution procedures

for multistage stochastic linear programmes
on parallel MIMD architectures

M.A H. Dempster and R.T. Thompson

Judge Institute of Management Studies, University of Cambridge,
Trumpington Street, Cambridge, UK

E-mail: {mahd2;rt208} @cam.ac.uk

Multistage stochastic linear programming has many practical applications for problems
whose current decisions have to be made under future uncertainty. There are a variety of
methods for solving the deterministic equivalent forms of these dynamic problems, including
the simplex and interior-point methods and nested Benders decomposition, which decom-
poses the original problem into a set of smaller linear programming problems and has
recently been shown to be superior to the alternatives for large problems. The Benders
subproblems can be visualised as being altached to the nodes of a tree which is formed from
the realisations of the random data process determining the uncertainty in the problem. This
paper describes a parallel implementation of the nested Benders algorithm which employs
a farming technique to parallelize nodal subproblem solutions. Differing structures of the
iest problems cause differing levels of speed-up on a variety of multicomputing platforms:
problems with few variables and constraints per node do not gain from this parallelisation.
We therefore employ stage aggregation to such problems to improve their paraliel solution
eificiency by increasing the size of the nodes and therefore the time spent calculating relative
0 the time spent communicating between processors. A parallel version of a sequential
importance sampling solution algorithm based on local expected value of perfect information
{EVPI) is developed which is applicable to extremely large multistage stochastic linear
programmes which either have too many data paths to solve directly or a continuous distri-
bution of possible realisations. It utilises the parallel nested Benders algorithm and a parallel
version of an algorithm designed to calculate the local EVPI values for the nodes of the tree
and achieves near linear speed-up.

Keywords: linear programming, dynamic stochastic programming, nested Benders decom-
position, parallel algorithms, aggregation, MIMD computers

Introduction

The purpose of this paper is to investigate parallel decomposition algorithms for

large-scale dynamic stochastic programming problems on two current multicomputers,
Fujitsu’s AP1000 and IBM’s SP2. A farming strategy is used to solve the subproblems

© J.C. Baltzer AG, Science Publishers

"

M.AH. Dempster, R.T. Thompson / EVPI-based importance sampling

of the dt?composilion in parallel and efficiency improvements through tj
aggregvauon of several subproblems are investigated. Stochastic programmim
exlen'51on4 to the field of mathematical programming obtained by inlrodun
certainty into the problem data and decision process. Such models are neces N
the effec;liveness of current decisions is dependent on future events. FieldsSa
stochastic programming models arise include economics, financial plannin
24,25,37, 4'4] and telecommunications: many examples can be found in [15 2g3
an appropniate probability space (Q, F, P), where Q is a sample space »\,/i[h
points @, ¥ is the o-field of subsets of Q and P is a probability measure, and
the (von Neumann-Morgenstern) expected utility of the problem objecti\;e le
general formulation for stochastic programming. ’
Two main approaches to static stochastic programming have been developeg.
the chance constrained and recourse formulations. The recourse formulation o bed
stage sl.o?hastic programming problem has a later, second stage that is depend; l‘lwo-
the decision vector from the first stage. This model can be extended to the multi:t o
case, when a set of decisions {x}, x;,..., x7} are to be made over time up to the horiage
T. Th.e sequence of random vectors @,, w,,.. ., @7 yield the discrete time (data) 52;0’1
chastic process: @ = (@), @,,..., ®7) and the notation @' := (@, ,,...,0) is usoci
to represent possible histories of this stochastic process up to time ¢. Ir; lhé m’ultistae
problem, an observation is made and then a decision is taken, followed by anothge
qbservation and another decision, and so on: £, ~ x, &~ x L6 Ero x Tt?r
first observation and decision are usually deterministic in these ;no&é,ls.TAﬁltZuio:

(see [4] for a full definition) can be used to i icipativi
L ” ntroduce nonant t
decisions into the recourse model. fctpattvity [13] of the

€ S[agg
8 1S the
iﬂg un-
TY whep
in which,
[8,9,2,
1. Given
sample
tak'mg
dsto 3

| 'If the stochastic process is discrete state, the expected criterion is a summation
an if all the problem functions are linear (and therefore separable), we obtain the
linear multistage recourse problem model

(LMRP) minimise {cl'xl + Q(xl) : A”xl = bl},
x

t
where O(x)) := Eg {min cix, + Q(x,) : ZA, X, = b a.s},
X, !
t=1
and O(x7,1) is specified,
h<x<y,
L<x,<wuas, 1=2, T M

Here, all constraints involving random variables hold almost surely (a.s), i.e. with
pro.bablllly one. There are several overviews of the stochastic programming‘lilerature
which contain information on chance constrained methods, approximating schemes
and problems with infinite horizons, see [15, 16,23, 33]. Dupacovi4 [20] has recently
surveyed the multistage stochastic programming literature.

ﬁ,,

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling 163

"“he deterministic equivalent of problem (1) can be taken by replacing the ex-
cta: ons by probability weighted summations over the finite number of data paths
and v iting deterministic constraints for each path. The size of the associated con-
strain: matrix increases exponentially with the number of time stages and the number
of ou: :omes for each random vector @,. Each of the data paths w := {®,, w,,..., w7}
is refe :red to as a scenario. The large-scale deterministic equivalent form of problem
(1) ca.1 be solved by the simplex or interior-point method. Alternatively, decomposi-
tion siethods such as augmented Lagrangian decomposition [16,40] or Benders
decor:position [3,5,28,45] can be employed. Benders decomposition is more suitable
for decomposing stochastic linear programmes than Dantzig— Wolfe decomposition
[14], -nd was first developed by Van Slyke and Wets [45] into a cutting plane algorithm
for th= two-stage problem. This has been extended to the nested decomposition method
by Birge [5] and Gassmann [28] for linear muitistage recourse problems.

~equential importance sampling methods are required to reduce the potentially
very iarge dimensionality of realistic deterministic equivalent problems, whilst parallel
progrzmming allows problems to be solved more quickly or more detailed problems
to be :reated.

.n section 2, nested Benders decomposition is reviewed and the associated algo-
rithm explained. Section 3 gives an outline of the MSLiP nested Benders code, while
section 4 describes the parallel version of the code and gives parallel results. Section 5
explz:ns the concept of expected value of perfect information (EVPI) [12,16-18) and
its caiculation, while section 6 contains the EVPI-S sampling procedure [12, 17]. The
paraliclisation of the EVPI algorithms is found in section 7, which includes numerical
resulis, and conclusions are drawn in section 8.

2. Nested Benders decomposition

fn the discrete case, the data sample path (scenario) space is partitioned into sets
E e F,C Fr:=Q, where F, forms a filtration over t = 1,...,T. The sets E, contain
realizations which are identical up to period 7 and are distinct at the horizon 7, so that
the stochastic process can be represented by a tree structure. In figure 1, the Lane tree
partirion matrix is shown [35], which gives the Lane node labelling (@', 1) for node
o' i period t and shows the partitioning E, of the sets in that stage. There is a 1:1
mapping between the outcomes of the random variables @' and the nodes of the tree
atstage 1, forz = 1,...,T. The realisation ®' can thus be used to represent a node of the
tree at stage ¢. The hierarchical structure of the nodes can be described in the same
manner as a family, with ancestors, descendants, parents, children, siblings and
cous:ns. The nested Benders method solves the problem in a recursive manner. This
can e illustrated by taking a particular node of the decision tree defined by the data
path @'and its descendants:

mil’l{C,((O’)'Xl(w’) + Q((O’, x,(a)')) . A,',((O’)Xl = b,((o’) — B((O’, X,((O’))}

1 12 12
1
! 1 1 13
1
1
\j\ 2 14 14
AY

Information Partition Kao,n

Figure 1. Tree partition matrix.

= min{c, (') x,(®") + 6,(0") : A (@")x, = b(0') - B, x,(0"))

6,(0") > Ao’ x(o"N}, 2)
where
-1
B, x,(0"):= Y A (0F T
») 21 2(@)x (@7)
(o', x ("))

t= minimise Y p(@* Ve, (@Y x, , (0
wl+l|wl
subject to Ay 114 1(@ " x s (@) = by (@) - Bt x,, (@), O

'
I < x(0) <y, ha<x,,< Upyy-

M.A.H. Dempster, R.T. Thompson / EVP[-based importance sampling 165

i;oth the corresponding primal and dual problems can be decomposed into sets
of sm:-tler subproblems, which can be solved using the simplex method. The number
of the::2 subproblems is equal to the number of descendants of the node @’. The dual
Probl&ms are all feasible, since the dual decision y,, ,(®'*") is unconstrained. If the
dual problem is unbounded, then the primal problem is infeasible, and a feasibility cut
can b placed in the parent node problem. Otherwise, for an optimal solution for (3),
either a single optimality cut is placed, if weighted sums are taken, or these can be
disageregated to give a set of cuts, known as multicuts.

Then, having a collection of dual feasible vectors (v, (@', A7, p'¥),i=1,...,
I(@". and directions (@™, 20, uh), j=1,...,J(w"), we obtain the relaxed
nodai problem
minimise {c,(0") x,(0")+6,(w"))}

x, (")

subject to Ay (@)x,(@") =b,(0')-B(0',x,(0")),

2 ylj+l(wr+l)’le(wH‘)+A,jlf+l

1-1

U =yl (@™MY T AL (@) x (@),
1=1

y'j+l (le),AI+IJ ((0')x, ((0')

Y p@ (@Y A (@x @)+ 0,(0) 2 Y po™yl (Y
mullwv w"‘l(u'
-1 !
[br+|(w,+l)—2A1+1,1(w1)x1(w1)]'*’A"lzﬂ_ﬂ”urﬂ}‘
7=1
L<x(0)<uy,,
i=1,.. (@) j=1...J(0").

C))
The objective c,(w") x,(@") + 6,(@") gives a lower bound on the optimal objective value
for the nodal problem, while c,(@")'x,(®") + Q(@', x,(@")) gives an upper bound. So,
if 60" 2 Q(@', x,(®"), the nodal problem is fully solved for the right-hand side
supplied to it. The relaxed problem is solved iteratively, producing optimality and
feasibility cuts until this condition is satisfied.

The nested Benders decomposition algorithm based on the above ideas can be
stated as follows (cf. [5,29]):

Step 0. Solve the root node (first-stage problem). At iteration zero, in problem (4),
set 8, := I,(@") := J;(@") := 0 and take the first constraint to be A;;x; = b.
Set 1 (") := J(@0") := 0, V1, @' If problem (4) is infeasible, stop — the origi-
nal problem is infeasible. If 8, > Q(x,), stop — the optimal solution has been
reached. Otherwise, set # := ¢ + | and let X, be the current solution vector to
the root problem.

M.A.H. Dempster. R.T. Thompson / EVPI-based importance sampling

Step 1. The formation of the next stage problems can be done by using the decig;
vectors from ancestors x,_,(©*~!) to form the right-hand sides of the C:)on
straints for r for all the outcomes of @' whose parents have ap Oplimr;i
s.olution, to give the appropriate problem (4). Some nodal problems at thig
time stage will not be solved due to the infeasibility of their parent or parepy’s
siblings problems. If a nodal problem is found to be infeasible, place fe,.
sibility cut in the parent node problem. This branch of the tree is not explored
any further until the parent node problem is re-solved to optimality. There jg
the choice to move either forward to r + | and g0 to step I, or backwarq to
t -1 and go to step 2. If t = T or all nodal problems in the current time period
are infeasible, then go to step 2.

Step 2. Set 6,(@") := —oo for all values which have not been previously been set i

this time period. If all the descendant node problems at node @' have optimal
solutions, a single optimality cut may be placed in the node @' probjem
Otherwise, a feasibility cut has been previously placed. In the case of multi-
cuts, both feasibility and optimality cuts may be placed in the node
problem. There is the choice to move either forward to + 1 and gotostep 1,
or backward to 1 - 1 and go to step 2. If = T or all nodal problems in the
current time period are infeasible, then gotostep 2. If r=1, go to step 0.

Problems at any stage need only be re-solved if supplied with a new right-hand
side or if 6,(@") < Q(w', x,(@")), when new cut information is supplied to the problem
at '. The sequencing protocol determines whether to descend the tree further in step |
(termed a forward pass) or return to the previous stage of the tree in step 2 (termed a
backward pass). The fast-forward-fast-back method [46) suggests continuing in the

current direction whenever possible and appears to be the most efficient sequencing
protocol [29].

3. The MSLIP code

The MSLIP code has been developed over a number of years through the com-
bined efforts of a variety of programmers [5,28]. The current version (8.3) is an
improvement on the version described in Gassmann’s working paper [29]. The MSLiP
nested Benders decomposition code (see figure 2) consists of the following modules:

(1) An LP solver (the NORMAL routine). The LP solver found in the code is a
modification of the Pfefferkorn—Tomlin LP code [39], which uses the product
form of the inverse. The pricing has recently been improved to include steepest
edge and random pricing, as well as the default most negative cost. It has no
crash-to-feasibility heuristics. Basis, primal, dual and right-hand side vectors
are needed from the solution of each nodal problem.

The subproblem manager routine (NDCOM) decides which direction in the tree
to move, which is dependent on the sequencing protocol. After a problem is

(2)

|
|

©)

@)

®)

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling 167

CORE FILE ' -

INPUT/NDAGGR LP SOLVER (NORMAL)

| STOCH FLE }—* I

L PROBLEM MANAGER

: (NDCOM)
. | BUNCHING t
THE MSLIiP : (TRICKS)
COMPUTING '
CODE j
: CUT PLACER
;
| EVPICALCULATION
(EVPI1Z) OPTIMALITY CUTS
(LKHDCT)
} ' FEASIBILITY CUTS
B S
ouUTPUT

SUMMARY FILE " .
BASIS FILE ' :

Figure 2. The MSLIiP system.

solved it is marked infeasible or optimal. NDCOM will then decide to place a
cut in the previous time stage and re-solve or form the right-hand side for the
next time stage. Each nodal problem is marked if it needs to be re-solved.

The cut routines form the optimality (LKHDCT) or feasibility (FEASCT) cuts
to be placed in the appropriate nodal problem. The optimality cuts depend on
whether the user has defined single or multicuts in the specification input file.
The default in MSLIiP is single cuts for the two-stage problem and multicuts for
multistage problems.

The bunching routine (TRICKS) tries to reduce the amount of calculation done
in solving a set of LP problems that differ only on their right-hand sides. These
problems may share bases and pivots, and may even have the same optimal basis
(see [28]).

After the solution has been reached, there is a routine (EVPIZ) for calculating
the EVPI at each node of the scenario tree. This indicator is useful in determining
how “stochastic” the problem actually is. Calculation of the EVPI process is
explained in section 5.

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling

.There are two other Benders-based codes which have been developed for solvj
rpultlstage SLPs: ND-UM [6] and SP/OSL [34]. Both are based on the IBM Subrg vine
hhbrary OSL [31] which performs the simplex calculations within the Bende, e
rithm. The hybrid code MSLiP-OSL [19,42] has been developed to give a mo
and accurate solution to each nodal LP problem, as well as to allow the poss
crash-to-feasibility and presolve procedures.

An additional routine, NDAGGR, has been added
OSL codes, which allows stages to be aggregated, see [19,
illustration of stage aggregation can be seen in figure 3.
this example combines the first three stages, then the n
two. This takes a 144-scenario problem down to a 36-s

TS algo.
TE Stable
lbility of

to the MSLiP and MSLip.
42,43] for more detailg, An
The aggregation scheme for
ext three and finally the last
cenario problem.

Figure 3. Aggregation of FOREST.8.144.

CPU .time red}lction can be obtained through stage aggregation. This may not be
tht_a case w1.th MSLIP, where larger LP problems take an extremely long time to solve.
With MSLiP-OSL, however, restructuring so that the earlier stages have larger nodal

1

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling 169

dimes:sions, especially the first time stage, can both reduce the computational time
consi-lerably and increase the stability [19]. The nodal dimensions of the subproblems
at otk -1 stages are dependent on the stochasticity; with higher stochasticity, more infor-
maticn 1s required from iteration to iteration and the nodal dimensions can be larger,
with {ower stochasticity, the nodal dimensions can be lower. Stage aggregation also
reduc=s the number of iterations and cuts needed to reach a solution.

it has been shown [9,43] that MSLiP outperforms the simplex and interior-point
methods — CPLEX was used for this testing — for large sparse problems. This, as well
as the inherent parallel properties of nested Benders decomposition and the associated
sampling scheme, led the authors to implement a parallel version of the MSLIP code.

4. Parallel MSLiP

Before explaining the parallel nested Benders decomposition method employed
in this paper, a summary of other parallel methods is given. Parallelisation of the
interior point method in effect means parallelisation of the Cholesky factorisation of
the compound matrix used in calculating the iterative step. This has been done in a
number of ways; by vectorising the procedure, by making use of the elimination tree
to distribute the columns of the matrix to processors [36], by using a block Cholesky
factorisation and distributing the blocks [13] and by using the dual Sherman—Morrison
decomposition formulation for multistage recourse problems of stochastic program-
ming due to Birge and Qi [47]. Parallelisation of the simplex method, on the other
hand, is extremely difficult [26].

The augmented Lagrangian decomposition method has been parallelised by
Ruszczyniski [41] and Escudero et al. [25], while the similar row-action equivalent to
augmented Lagrangian decomposition method used by Nielsen and Zenios [38] again
decomposes by scenarios. The solution time has been shown to be reduced signifi-
cantly on Thinking Machine’s CM-2 when a system with more processing elements
is used. These methods appear to be well structured for parallelisation, with each
processor solving one particular scenario corresponding to a stochastic data process
path and with non-anticipativity information being passed between processors. How-
ever, to the authors’ knowledge the sequential algorithm has a relatively slow solution
time when compared to methods such as nested Benders decomposition and the
interior-point method.

Dantzig et al. [32] have a parallel implementation of their importance sampling
based Benders decomposition code, while Ariyawansa and Hudson [2] parallelised
the two-stage problem in a similar manner to the Dantzig method — the main difference
being that each processor is assigned a subset of the second-stage nodal problems.
Eckstein and Hiller [21] have produced a Benders-based decomposition scheme as a
subsystem to a portfolio selection algorithm. Speed-up by a factor of 32 was obtained
for the Benders-based portion of this algorithm on a CM-2/SUN-4 machine with
16,000 processing elements when compared with a sequential time measured on a
SUN-4.

M.A.H. Dempsier, R.T. Thompson / EVPI-based importance sampling

A parallel nested Benders decomposition which uses a farming strategy hag p,

formed fr.om the AND—UM code of Birge et al. [7]. The master processor stareg (:En

computation and initialises the slave processors. A subtree (see figure 1) is solved oe
n

first)

solves the portion of the tree UP 10 the rogy

node of the subtree. Slave processors do not branch from other slave processorsg

A parallel version of MSLiP has been implemented on Fujitsu’s APlO()o.al d
IBM’s SP2. See [19] for a description of the AP1000. The SP2 had 16 IBM RSG()(I;O
390 Power 2 processors, each with 128 Mbytes DRAM and double precision peay
Performance of 250 Mflops; therefore, any speed-up achieved is from a leve] which
is faster than most sequential computers. The system was run under MPI and (h=
theoretical peak for communication bandwidth was 40 Mb/s and a latency rating 0}
40 microseconds, with the host workstation being an RS6000 PowerPC processor

The paraliel algorithm described below is more similar to the methods of [2,22 3.2]
than to that of [7]. The idea is to achieve load balancing, which cannot be achieve(’j by
splitting the tree into a set of subtrees, at the possible expense of communication
overhead. It uses the farming technique, with a master and a number of slaves decided
by the user. In this technique, the master processor allocates work to each of the slave
processors and then receives information from each slave processor. The master pro-
cesses this data and decides how the algorithm should proceed. The master sends LP
information to a slave processor when that slave becomes available. The method can
be described for a multicomputer attached to a host processor as follows,

Host

Step H: 0. Send master module to processor 0. Send slave module to processors
s=1,2,...,5. Send data to processor 0.

Step H: 4. Receive optimal solution from processor 0.

Master processor
Step M: 0. Receive module from host. Receive data from host.
Step M: 1. Solve master problem, obtaining trial solution.

Step M: 2. 'Assuming there are m > § nodes to be solved in the current time stage, send
information for the first S subproblems to slave processors s = 1, 2,....5.

Step M: 3. When an optimal solution is returned from a processor s € {1, 2,...,S},

send the information to solve another nodal problem to processor s unless
there are no problems left to be sent. If there are no nodal problems
remaining to be sent, go to step M: 4. If an infeasible solution is returned
from a processor, go to step M: 4. If there is only one nodal problem left
to be sent and there is only one slave available, this problem is solved on
the master processor.

hi

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling

171

Step M: 4. When all nodal problems have been solved or a problem is found to be

infeasible, the master determines whether to move forward or backward
in the tree. The master forms the cuts for all nodes.
On reaching the first stage in the tree and finding there are no more sub-
problems to be solved in the tree, the optimal solution has been reached.
It is returned to the host, and the slave processors are informed to stop.
Otherwise, return to step M: 2.

Slav:: processor

Step S: 0. Receive module from host.

Step S: 2. Receive and solve LP problem sent from master.
Step S: 3. Return solution to master and return to step S: 2.
Step S: 4. Receive message from master to stop, and stop.

A slave processor requires new constraints (cuts), new right-hand sides and basis
information to be sent from the master processor, while the master processor requires
anew primal vector, a new dual vector, basis information and the status of the LP
problem — feasible or optimal — from a slave. The slave processors operate as LP
solvers in an asynchronous manner. A synchronising step occurs when the master
processor changes the stage and forms the new cut information. Dynamic load-

“balancing occurs within this framework, as when a slave processor becomes available,

the next nodal LP problem to be solved is automatically sent to that processor.

If the nodal subproblems are large enough, this algorithm should have reasonable
loac balancing properties, though there may be a communications bottleneck while
slave processors try to communicate with the master. The sequential portion of the
algcrithm is dependent on the structure of the problem, but is relatively small when
thei= are a large number of scenarios. Increasing the number of stages does not neces-
sartiy reduce this portion, as cut generation is performed on the master processor only.
Amdahl’s Law [1] does show that speed-up is generally possible for the test problems
covered (see [43]).

Figures 4 and 5 plot speed-up against the number of slave processors. Problems
throughout this paper are labelled in the following way: Prob.Per.Scen, where Prob
gives the problem name, Per gives the number of periods and Scen gives the number
of scenarios in the problem. Most of the problems listed in table | are stochastic
versions of various well-known NETLIB problems, while the SGPF and WATSON
problem sets [11,27] are both portfolio management problems. The table gives the
deterministic equivalent dimensions of each problem (rows, columns and nonzeros),
the objective value (Obj. val.), the associated tree structure (Tree), which for these
balanced trees is given by the amount of branching at each time stage, the stochasticity
(this is defined in section 5) (EVPI), and their sequential solution times on the SP2
(MSLiP).The notation used to denote the branching of a balanced scenario tree is best

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling

SP2 Resuits

[==S==SCTAPL2 400 =~—LOUVEAUX 21200 ~=dhr==s058 2 472
| ™—SGPF53425 0 5C205.2. 1600 = ® = SCAGRI26¢
— T T T 7 7 SCAGRILN

Speed-up

4 6 7
Ne, Slaves s '

Figure 4. SP2 - various problem sets.

explained by example. Thus, 43 - 23
branches for the first three stages and
branching at the seventh (penultimate)
given in this paper, but they show the g
that can be found in [43].

- 1 means that from each node emanate four
two branches for the next three stages, with no
stage. Only a subset of the problems tested are
eneral pattern for all the parallel performances

It is noticeable that the parallel algorithm generally performs better on two-stage
problems than on multistage problems. Super-linear speed-up occurs on the SC205
problem set (which occurs because of anomalous behaviour), near-linear speed-up is
obtained on the two-stage SCSD8 and SCTAP1 problem sets on 4 processors, while
speed-up was achieved on both the multistage SGPF and WATSON problem sets. The
nodal problem sizes for the SGPF and WATSON problems are larger than for the
FOREST multistage problems, which have poorer parallel performance. It should be

noted that for two-stage problems, our algorithm is equivalent to both the Birge et al.
and Dantzig et al. parallelisation techniques [7,32].

. M-“w..m.w»c,J

M.A.H. Dempster, R.T. Thompson / EVPI-based imporiance sampling

Aggregated v Neo-Aggregated
45
[
15
== WATSON 1051214
! == WATSONJ0.1024 LA
==FORESTAS124
25 =B WATSON 105121NA
: == WATSON I0.I041 NA
l =4 FORESTLS12NA
L
15
13 * —
1]
0+ + } t + !
3
¢ ! No.‘Sllm §
Figure 5. SP2 - various problem sels.
Table 1
Problem characteristics — a summary.

Name Rows Cols Nonz Obj. val Tree EVPI MSLIiP CPU
$C205.2.1600 35212 35214 96030 0.0 1600 - 31.25
SCSD8.2.432 8650 60550 190210 25.80 432 0.24 13.73
SCAGR7.2.864 32847 34580 108906 — 834446 864 0.01 29.67
SCTAP1.2.480 28830 46128 169068 248.50 480 0.20 25.59
LOUV.2.1280 8962 20484 40968 482.64 1280 9.35 60.34
FOREST.8.384 15667 14927 62795 -43759 47 . 3. 323 -1 275 3286
FOREST.8.512 20771 19791 83307 - 43869 4°.2°-1 2.51 40.64
SGPF5.5.625 49202 61759 165570 —-5201.282 54 10.84 41.07

9
WATSON.10.512.1 67069 128001 350728 —-1959.63 2 . 44.63 ig;g:
WATSON.10.1024.1 134127 255987 701428 - 1926.79 4.2 46.53 .

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling

.While Amdahl’s Law would indicate that the obtainable speed-up is legg £
multistage problems [43] than for two-stage problems, the theoretical speed-ups o
not achieved. This is partly due to the tree structure; multistage problems cango[at:e
totally parallelised in later stages as there are not enough processors, while ip [he
fearli.er stages, there may be more processors than nodal problems to be solved, resuhe
Ing 1n some processors remaining idle. In the multistage problems, cuts have to be
pgssed from master to slave, and on large problems where many cuts may be createg
this increases the communication time significantly. If the communicalion-lo-calcula’
tion rati.o becomes too high, a bottleneck develops, with too many slave processor;
attempting to communicate with the master processor.

To reduce the communication-to-calculation ratio for multistage problems, stage
aggregation has been employed (as shown in figure 3). Bigger nodal subproblems
will lead to larger intervals between communication. A reduction in the number of
cuts formed by the master should also ensue from this aggregation, reducing the
number of sequential operations. Figure § compares aggregated speed-ups with
the non-aggregated equivalent, with similar schemes as that shown in figure 3. The
aggregated problems always perform better and it can be seen that for both the
FOREST and WATSON problem sets, greater speed-ups can be achieved. The parallel
algorithm is reasonably efficient on up to eight processors for the SP2.

Anomalous effects have occurred with certain problem sets where feasibility cuts
have been placed, noticeably with the SC205 problem set, but also with the SCAGR7
set. With more than one slave, a different ordering in the return of nodal subproblems
may lead to a different solution path. This occurs in other parallel applications, such
as the branch and bound algorithm for mixed integer programming. This type of CPU
reduction could be introduced into the serial algorithm by randomising the order in
which nodal subproblems are solved within a time stage. Possible anomalies are classi-
fied as acceleration anomalies, deceleration anomalies and detrimental anomalies.
Acceleration anomalies occur when the solution time achieved is faster than expected,
while deceleration anomalies are exactly the opposite. Detrimental anomalies are
severe deceleration anomalies where the solution time achieved is slower than the
sequential solution time. A similar observation has been made by Hajian et al. [30].
(FOREST.8.512 does not experience a detrimental anomaly — there is no speed-up
because the communication-to-calculation ratio is too high.)

5. Expected value of perfect information: EVPI

For a multistage recourse problem, each node of the tree has an associated
expected value of perfect information value, called the local EVPI, defined as

EVPI(0') := n,(0') - ¢,(0"),

where 7,(@") denotes the optimal value of the problem with root node defined by @'
and

1

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling 175

00" := Eg o ' (@)

is the expected value of having perfect information about the future — i.e. the optimal
valuc () along each data path @ from time z onwards from the data history path '.
The }>cal EVPI values form a stochastic process, termed the EVPI process {EVPI(@") :
t=1....,T}, which is a supermartingale [17]. The supermartingale property math-
emat:cally states the intuitive result that information becomes less important on aver-
age a: t increases, i.e. closer to the horizon T. This leads to the following observations
abour the EVPI process:

(1) if the EVPI at a node is zero, all its descendant nodes have zero EVPL.
(2)
3)

)

A node in the tree whose descendants have no branching has zero EVPI,
At the root node, the process value is the EVPI of the problem.

The local stochasticity of a node of the tree is the local EVPI normalised by the
optimal value of the whole problem. For the root node, this ratio is termed the
stochasticity of the problem.

For each path which branches at, or after, the node ', the optimal value is
calculated with all nonanticipativity conditions ignored. These paths are all in the set
E(w") € F, C P(Q), the set of all subsets of scenarios at time 1. The local EVPI value
at a node of the tree at stage 1 is calculated by solving to find z'(w) for all w € E,(").
Eacl: ' (w) is an LP problem conditional on @'~' with all the data from @' along the
path . This is multiplied by the conditional probability at @' for each path before the
sum over @ € E,(w") is taken to obtain ¢,. This value is then subtracted from the actual
optimal value 7,(@"} at the node to give the local EVPL.

To calculate the values of the EVPI process, this procedure has to be repeated
for every node of the tree except for those in the last period (which have zero EVPI).

This procedure is performed in MSLIiP as follows:

Step 1. Define an array called EVPI, say, with length equal to (or exceed'ing) the
number of nodes in the tree. Set all values in the array to zero.

Step 2. Take the first scenario in the tree and set t := T — 1.

Step 3. Calculate the optimal value of the current path by a call to the LP solver and
multiply it by the conditional probability of the occurrence of this path at the
current node. Add this value to the corresponding position for this node in
the EVPI array. Set t:=1— 1. If 1 < 1, go to step 4, otherwise repeat step 3.

Step 4. Find the next path of the tree, set t := T — 1 and go to step 3. If all paths of
the tree have been traversed, go to step 5.

Step 5. These calculations lead to the position where for each node @', t < T, the

value ¢,(w') has been calculated in the array EVPI, i.e. EVPI,(@") = ¢,(®").

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling

For all nodes, reset the value in the EVP] array by subtracting the Calculagey
value from the nodal optimal value, i.e. in programming notation

EVPI(0") := m(w') — EVPI(0").

The va!ues ¢,(w") are stored in the same vector as the EVPI(®") values to save
memory. This implementation applies to both the MSLiP and MSLiP-OSL codes

6. EVPI-S sampling

‘ Corvera Poiré and Dempster [12,17] developed a method which can be con-
sidered to be based on artificial intelligence ideas to approximate the true EVP] apg
therefore the optimal solution of the problem. More precisely, their method utilizes
segue{ntial importance sampling heuristics, using the EVPI process as the importance
criterion to push the sampled approximations towards the true optimal value. This is
accomplished by increasing the number of sampled branches from a node of T,
with high relative EVPI in 7, and decreasing or resampling the branches with negnl-ii
gible EVPI relative to the sample problem EVPI. These heuristics can be used in a
variety of ways to give a whole family of EVPI- sampling algorithms, which are termed
EVPI-S. The sampling method employed by all the EVPI-S algorithms represents the
data path tree 7 associated with the problem by sampling a sequence of trees 7,
T,....,T,, where T, is always more representative of T than Tt ,

The data scenario-subtree is formed and the corresponding problem is converted
to the standard format SMPS using STOCHGEN (see [12]). It can then be solved with
MSLIP or MSLiP-OSL and its EVPI values EVPI(®") computed. Given that the prob-
lem corresponding to T, _; has been solved and its local EVPI values computed, one
of the following may occur at each node of the tree T, to form T,:

(1) Where the nodal EVPI is above a certain zero tolerance level and its descendents
have not been considered previously (there was no branching from them in the
tree T,_y), the tree is expanded — to a depth of one or more stages — by inde-

pendent sampling conditional on the appropriate nodal data so that more multiple
branches to descendent nodes are considered in Too.

) jb‘t nodes where the local EVPI value is below the zero tolerance, a new subtree
Is generated by resampling the set of paths conditional on the path to the particu-
lar node, with or without replacement. The true local EVPI value may not be
zero and so the local EVPI is thus re-estimated.

(3) At nodes where the local EVPI value is found to be repeatedly below the zero
tolerance over a sequence of iterations, the subtree is collapsed. It becomes more
certain with each iteration that this local value is indeed zero or very small. This
collapsing is in fact resampling of a single path done from the parent node of the
node found to have near-zero local EVPI. A period before which EVPI values

RS —

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling 177

»elow the zero tolerance are not collapsed is required, with the period possibly
seing changed after each iteration.

. [12], the ratio of local EVPI to root optimal value — which corresponds to the
local stochasticity - is the tolerance criterion used (1 or 5 percent). The algorithm can
e stzted as follows:

Step +. Set the number of iterations to be performed, N say. (Alternatively, a termi-
nation condition could be used, such as when the rate of increase in EVPI
decreases below a certain threshold.) Set n := 1.

Step :. Sample a scenario-subtree T, based on the current EVPI information carried
by Ty

Step 3. Generate the corresponding SMPS files for the problem corresponding to the
tree T, using STOCHGEN.

Step 4. Solve the multistage recourse problem defined by the SMPS files with MSLiP
or MSLiP-OSL and obtain the nodal EVPI values.

Step 5. If n < N, setn :=n + 1. (In the finite scenario case, transfer the sample EVPI

information from 7, to the full tree 7) Otherwise stop, the sampling has
terminated and an estimate of the optimal solution obtained.

The set of sampling procedures which are defined as above can greatly reduce
the size of the problem to be solved so that more detailed problems, or problems with
acouzinuous distribution of data paths, may be solved. Examples of these large reduc-
tions an be found in [12], which reports, for example, that SGPF5.3125 can be reduced
from: 3,125 to 677 scenarios, with a solution value within 1% of that of the full problem
bein: obtained in 10% of the CPU time.

7. Parallel EVPI

In producing a fast EVPI-S sampling system which is unbiased in the small
sample, the solution times of the nested Benders decomposition and EVPI calcula-
tiong are highly important. Therefore, a parallel EVPI method has been developed for
MSLiP. As the parallel EVPI is within the parallel MSLiP system, the algorithm is
presented below as a continuation of the nested Benders parallel algorithm.

The host processor is as before, with step H: 4 relabelled as step H:7. It receives
all the EVPI information.

i
¥ Master processor

1
i
i
i
H

N

Step M: 0-Step M: 3. As before.

Step M: 4. When all nodes have been solved, the master determines whether to move
forward or backward in the tree. The master forms the cuts for all nodes.

178 M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling

On reaching the first stage in the tree and finding there are no more gyp,.
problems to be solved in the tree, the optimal solution has been Teacheq
Send message to slaves to perform EVPI calculation and go to step M: 5:
Otherwise, return to step M: 2.

Step M: 5. Take the first scenario in the tree and set1:=T- 1. Assuming there are

m 2 § paths in the tree, send information defining the first S paths (o slave
processors s =1, 2,....S.

Step M: 6. When a solution for each LP defined along the path has been returned
from a processor s € (1, 2,...,5}, add the value of each node in the path
to the corresponding position for each node in the EVPI array. Send the
information defining the next path to processor s unless there are no paths
left to be sent. If there are no paths left to be sent, go to step M: 7.

Step M: 7. The EVPI for each node in the tree is calculated by subtracting the appro-
priate EVPI array value from the nodal optimal value.

The optimal solution has been reached and the EVPI values calculated for nodes
of the tree. This information is returned to the host, and the slave processors are
informed to stop.

Slave processor
Step S: 0-Step S: 3. As before.
Step S: 4. Receive message from master to perform EVPI calculation.

Step S: 5. Receive path information or termination condition from the master. If the
termination condition has been received, then stop. Otherwise, calculate
the optimal value of this path, multiply by the conditional probability of
the occurrence of this path at the current node and store the value. Let 1 =
¢~ 1 and repeat step S:5. Otherwise, goto step S: 6.

Step S: 6. Ift< I, the set of optimal values, one for each node (apart from the leaf
node) along the path, are sent to the master processor. Return to step S: 5.

The communication required between the master and slave processors when there
are more than two stages is much less for this algorithm than for the nested Benders
algorithm. The load-balancing property observed in the nested Benders parallel code
is maintained, with each newly available processor receiving the latest information.
The results reported here are for the SP? implementation running under MPI. Large
problems were again run on the SP2 on up to 8 slaves processors. The solution of two-
stage problems does not gain from the addition of extra processors and, as EVPI is
appropriate only for multistage problems in terms of the sampling algorithm (a two-
stage problem has only a single EVPI value at the root node), results are not shOW.l'l
here. The algorithm appears to perform reasonably on three-stage problems and is

[ER—

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling 179

VP Specd-up Resets - SP2
$:
i
1
6 |~ =wATSON105121
== WATSON 1016241
~4==FOREST 2288
’ =S ROREST 334
(=W=ROREST1512
: K- SPRIS A5
1‘ WeSFSSEY
& LT3R
3
1
|
5
ol — . — —
¢ 1 H 3 4 5 6 1 i
No. Savey
Figure 6. EVPI speed-up on the SP2.
Tabie 2
SP2 EVPI results.
' Slaves
Name
Serial 1 2 3 4 5 6 7 8
WATSON.10.512.1 1.00 0.97 195 292 381 4.84 5.80 6.77 7.62

WATSON.10.1024.1 1.00 1.00 202 303 401 5.03 6.04 6.99 797

approximately 50% efficient on 8 slave processors. For prgblems of more than three
Stages, its efficiency and speed-up are high (>90% efficiency), especially for the
FOREST, WATSON.I and SGPF problem sets, see figure 6. Table 2 shows the speed-up
on 1 to 8 slaves processors for problems WATSON.10.512.1 and WATSON.10.1024.1.

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling

It can be seen that they both achieve near-linear speed-up. Amdahl’s effect can be
seen in the efficiency increase for the larger problem.

On the AP1000, up to 35 processors were used to test the performance of the
parallel EVP] implementation. FOREST.8.288 achieved a speed-up of 29 on 35 slaves,
an efficiency of 83%. A large SGPF problem achieved speed-up of 18 on 24 g]
efficiency of 75%. The WATSON problem set required too much DRAM to b
on the Fujitsu machine.

The efficiency of the EVPI calculation suggests the use of parallelisation for
the EVPI-S sampling technique. The EVPI takes a significant proportion of the cop.
putational time for the multistage problems for which the sampling technique wag
designed. An example is shown in figure 7 for the parallel MSLiP code. The three
iterations of the parallel EVPI-S procedure have different parallel performances; a4
the size of the problem increases (T, > T,_)), the parallelisation improves. Since
MSLiP-OSL performs the EVPI calculation much faster than MSLIP, it is to be pre-
ferred in a sequential sampling algorithm. The parallelisation of the MSLIiP-OSL code
would lead to lower speed-up for the WATSON.10.1024.1 problem shown in figure 7,
since the solution time of the EVPI calculation would play a smaller part in the overal]
solution time. (Unfortunateiy, this has not been performed as the OSL software hag
not been installed on either parallel machine.) However, as the solution of a whole set
of problems is needed when sampling, each of which can require a large amount of
CPU time, even lower speed-ups can still be extremely useful. The problem shown
can be solved in parallel by EVPI-S on the SP2 with 8 processors in ~ 9.1 min versus
solution in parallel of the full problem (with EVPI calculation) in ~ 11.5 min. The full
problem is solved serially in ~75 min (parallel speed-up 6.5/8). For much larger
problems, the advantage of the paralle] EVPI-S algorithm will be still further high-
lighted.

aves, ap
€ solved

8. Conclusions

As nested Benders decomposition for linear multistage recourse stochastic
programming problems compares favourably with both interior-point and simplex
methods, and can be stabilised for difficult problems by the use of stage aggregation,
it appears to be a sensible method to parallelise, especially as there is a sampling
procedure which utilises this method. This paper is mainly concerned with the parallel-
isation of nested Benders decomposition and the EVPI calculation within the MSLiP
code. These algorithms are integrated into the EVPI-S sampling algorithm for solving
linear multistage recourse problems with large, continuous state, stochastic structures.

Along with most coarse-grain parallel algorithms for solving multistage recourse
problems, this parallel nested Benders algorithm uses a farming strategy, as does the
parallel EVPI algorithm. Each slave processor solves an LP problem, with the master
processor directing operations. This type of algorithm has good load-balancing proper-
ties. Results on a variety of multicomputing platforms show that, as with other parallel

7

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling 181

VPl Sanpling f WATSON O MOAC

=WATSONHSL |
- =B ¥ATSONI0I%L 2
A VATOLASHC 3
L 14]

0 FULL PROBLEM SIEEDP

Yo, Strves
Figure 7. EVPI-S speed-up on the SP2.

decmposition strategies, the performance of the algorithm is proplem depend(?nt. It
is particularly dependent on the communication-to-calculation ratio of the particular
plaiform. . _ _

The problem sets on which the parallel algorithm performs best — with near
linear speed-up on up to 8 processors — had larger nodal LP Problems to solve. The
length of time spent communicating between processors is critical to the performance

4

M.AH. Dempster. R.T Thompson / EVPI-based importance sampling

As the communication-to-calculation ratio is critical to
data needs to be replicated on

parallel EVPI algorithm.
Further methods which could improve the parallel algorithm are:

(1) A hybrid parallel code could be attempted which is a cross between the paralle]
algorithm presented here and the Birge et al. [7] parallel algorithm, with a slave
processor solving a node and its children, say, before returning a solution to the
master processor. There may, however, be a problem with transferring cut infor.
mation to the appropriate processor in this case.

2) A slaYe processor could solve a set of LP problems at the same stage before
returning soluthns to the master. This resembles the parallel EVPI calculation.
The load-balancing property of the algorithm can be maintained by not initially

allocating all the LPs to be solved to the slave processors.

3 A semi-d-istributed load balancer could be employed with more than one proces-
sor forming cuts. Depending on the node, a particular processor may form the

cut and broadcast the information to other slave processors.

The penultimate section of this paper concentrates on the EVPI-S
rithm. For a further reduction in solution time and to make the whole system viable in
a practical setting, the parallelisation of the EVP] calculation was needed. This is a
much simpler operation than that of the parallelisation of nested Benders decomposi-
tion an_d has a very small percentage of sequential calculations in the multistage case.
Near-linear speed-up was achieved on most problems with more than three stages.

sampling algo-

reasonable speed-up on up to 8 processors.
Acknowledgements

We are grateful to Professor Tony Hey and the Southampton High Performance
Computing Consortium, and Fujitsu (UK) Limited and the Imperial College Fujitsu
Parallel Computing Research Centre for access to and support for the parallel com-
puting facilities used in the experiments reported here.

I}
121
13]

(4]
t5]

(6]

[7

8]

9]

[10]

(1]
{12]

(13)

(14]

(15]
[16]

(1n

(18]

(19]
[20)
21)
[22]

(231

M.A.H. Dempster, R.T Thompson / EVPI-based importance sampling 183

Refel +nces

.M. Amdahl, Validity of the single processor approach to achieving large scale computing abilities,

+ ~“IPS Conference Proceeding 30(1967)483 -485.

k A. Ariyawansa and D.D. Hudson, Performance of a benchmark parallel implementation of the

Van-Slyke and Wets algorithm, Concurrency: Practice and Experience 3(1991)109-128.

J.¥. Benders, Partitioning procedures for solving mixed-variable programming problems, Numerische

Mathematik 4(1962)238--252.

t. Billingsley, Probability and Measure, 2nd ed., Wiley, New York, 1980.

3 R. Birge, Decomposition and partitioning methods for multistage stochastic linear programs,

Ciperations Research 33(1985)989—1007.

JR. Birge, C.J. Donohue, D.F. Holmes and O.G. Svintsitski, ND-UM version 1.0 computer code

far the nested decomposition algorithm, Department of Industrial and Operations Engineering,

iniversity of Michigan, August 1994,

J.R. Birge, C.J. Donohue, D.F. Holmes and O.G. Svintsitski, A parallel implementation of the nested

ecomposition algorithm for multistage stochastic linear programs, Technical Report 94-1, Depart-

wment of Industrial and Operations Engineering, University of Michigan, 1994,

+*R. Carino, T. Kent, D.H. Myers, C. Stacy, M. Sylvanus, A. Turner, K. Watanabe and W.T. Ziemba,

‘The Russell - Yasuda Kasai model. An asset/liability model for a Japanese insurance company using
wltistage stochastic programming, Interfaces 24(1994)29-49.

2. Consigli and M.A H. Dempster, Dynamic stochastic programming for asset~liability manage-

:ent, Annals of Operations Research 81(1998)131-161.

. Consigli, M.A.H. Dempster and N. Hicks Pedrén, Comparative evaluation of algorithms for

Jdynamic stochastic programming, Working Paper, Judge Institute of Management Studies, University

:f Cambridge, 1999.

i5. Consigli, M.A .H. Dempster, D.G. Richards and R.T. Thompson, The WATSON pension fund

1anagement problems, hnp://www—cfr.jims.cam.ac.uk/research/sptp.html (1996).

X. Corvera Poiré, Model generation and sampling algorithms for dynamic stochastic programming,

“h.D. Thesis, Department of Mathematics, University of Essex, September 1995.

¥. D’Ambra and M.I. Sales, Concurrent banded Cholesky factorization on workstation networks,

‘Vorking Paper, Department of Mathematics and Applications, University of Naples and IBM ECSEC,

Rome, 1993,

3.B. Dantzig and P. Wolfe, Decomposition principle for linear programs, Operations Research

2(1960)101-111.

M.A.H. Dempster (ed.), Stochastic Programming, Academic Press, London, 1980.

M.A.H. Dempster, On stochastic programming I1: Dynamic problems under risk, Stochastics 25

1988)15-42.

M.A.H. Dempster, Sequential importance sampling algorithms for dynamic stochastic program-

ining, Research Papers in Management Studies WP 32/98, Judge Institute of Management Studies,

University of Cambridge, 1998.

M.A.H. Dempster and H.I. Gassmann, Using the expected value of perfect information to simplify

*he decision tree, Abstracts 15th IFIP Conference on System Modelling and Optimization, IFIP,

Zurich, 1991, pp. 301 -303.

M.A H. Dempster and R.T. Thompson, Parallelization and aggregation of nested Benders decom-

position, Annals of Operations Research 81(1998)163-187.

I. Dupagovd, Multistage stochastic programs: The state-of-the-art and selected bibliography,

Kybernetika 31(1995)151—174.

J. Eckstein and R.S. Hiller, Stochastic dedication: Designing fixed income portfolios using massively

parallel Benders decomposition, Working Paper 91-02, Harvard Business School, 199] .

R. Entriken, The parallel decomposition of linear programs, Technical Report SOL 89-17, Depart-

ment of Operations Research, Stanford University, 1989.

Yu. Ermoliev and R.J-B Wets (eds.), Numerical Techniques for Stochastic Optimization, Springer,
Berlin, 1988.

[24]
[25]
[26]

[27)]

[28]
[29]
[301
[31]
[32]

[33]
[34]

[35}

[36]

[37]
[38]

[39]

[40]
[41]
[42]
[43]
[44]
[45]
[46]

[47]

M.A.H. Dempster, R.T. Thompson / EVPI-based importance sampling

L.F. Escudero, PV. Kamesan, A J. King and R.J-B Wets, Production planning via scen
Annals of Operations Research 43(1993)311-335.

L.F. Escudero, J.L. de Ia Fuente, C. Garcia and FJ. Prieto, A parallel computation ja,
solving multistage stochastic network problems, Annals of Operations Research (1999
J.J.H. Forrest and J.A. Tomlin, Vector processing in simplex and interior methods, Annal
Research 22(1990)71 - 100.

K. Frauendorfer, C. Marohn and M. Schriile, SG-portfolio test problems for stochastic multistage
linear programming, Technical Report, Institute of Operations Research, University of St. Gailey,
1995. '
H.I. Gassmann, MSLiP: A computer code for the multistage stochastic linear programming problem,
Mathematical Programming 47(1990)407 - 423,

H.I. Gassmann, MSLiP 8.2 User’s Guide, School of Business Administration, Dalhousie Univers,‘[y‘
1992.

M.T. Hajian, 1. Hai and G. Mitra, A distributed processing algorithm for solving integer programs
using a cluster of workstations, Research Report, Department of Mathematics, Brunel Universi(y,
September 1994.

IBM Optimization Subroutine Library (OSL), 4th ed., IBM Corporation, 1992.

G. Infanger, Planning Under Uncertainty. Solving Large Scale Stochastic Linear Programs, Boyd
and Fraser, Danvers, 1994,

P. Kall and S.W. Wallace, Srochastic Programming, Wiley, 1994,

A. King, SP/OSL Version 1.0 Stochastic Programming Interface User’s Guide, IBM Research
Division, Yorktown Heights, New York, 1994,

M. Lane and P. Hutchinson, A model for managing a certificate of deposit portfolio under up.
certainty, in: [16], pp. 473-496.

R. Levkovitz and G. Mitra, Solutions of large-scale linear programs: A review of hardware, software
and algorithmic issues, in: Optimization in Industry, eds. T.A. Ciriani and R.C. Leachman, Wiley,
1993.

J M. Mulvey and H. Vladimirou, Stochastic network programming models for financial planning
problems, Management Science 38(1992)1642-1664.

S.S. Nielsen and S.A. Zenios, Solving multistage stochastic network programs on massively parallel
computers, Mathematical Programming 73(1996)227-250.

C.E. Pfefferkom and J. A. Tomlin, Design of a linear programming system for ILLIAC-V, Technical
Report SOL 76-8, Department of Operations Research, Stanford University, and Technical Report
5487, NASA-Ames Institute for Advanced Computation, Sunnyvale, CA, 1976.

R.T. Rockafellar and R.J-B Wets, Scenarios and policy aggregation in optimization under un-
certainty, Mathematics of Operations Research 16(1991)309-333.

A. Ruszczyriski, Parallel decomposition of multistage stochastic programming problems, Institute
of Automatic Control, Warsaw University of Technology, 00665 Warsaw, Poland, August 199].
R.T. Thompson, MSLIP-OSL 8.3 User’s Guide, Judge Institute of Management Studies, University
of Cambridge, 1997.

R.T. Thompson, Fast sequential and parallel methods for solving multistage stochastic linear
programmes, Ph.D. Thesis, Department of Mathematics, University of Essex, 1997.

C. Vassiadou-Zeniou and S.A. Zenios, Robust optimization models for managing callable bond
portfolios, European Journal of Operational Research 91(1996)264-273.

R. Van Slyke and R.J-B Wets, L-shaped linear programs with applications to optimal control and
stochastic programming, SIAM Journal of Applied Mathematics 17(1969)638 - 663.

R. Wittrock, Dual nested decomposition of staircase linear programs, Mathematical Programming
Study 24(1985)65 - 86.

D. Yang and S.A. Zenios, A scalable parallel interior point algorithm for stochastic linear program-
ming and robust optimization, Computational Optimization and Applications (1997).

ario modefling,

PProach fo,
), this Volume,

s of Operation

annal: of Operations Research 90(1999)185-202 185

Parallel local search for Steiner trees in graphs

M.G.A. Verhoeven? and M.E.M. Severens®

“Department of Mathematics and Computing Science,
Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

E-mail: marcov@win.tue.nl

Océ Technologies, P.O. Box 101, 5900 MA Venlo, The Netherlands

This paper discusses sequential and parallel local search for the Steiner tree problem in
zraphs. We introduce novel neighborhoods whose computational time and space complexity
*s smaller than those known in the literature. We present computational results for benchmark

nstances from [3} and instances derived from real-world traveling salesman problem instances,
which contain up to 18,512 vertices and 325,093 edges. These results show that good-quality
solutions can be obtained in moderate running times. Furthermore, we present a paraliel
socal search algorithm based on multiple-step parallelism and an optimal polynomial-time
~ombination function. Computational resuits show that good speed-ups can be obtained

without loss in quality of final solutions.

1. Introduction

In the Steiner tree problem in graphs, a minimum weight tree has to be found
that includes a prespecified subset of vertices of a graph. The Steiner tree problem
occurs in several practical applications, such as the design of telephone, pipeline, .and
transportation networks, and the design of integrated circuits. Although the .Steu.ler
tree problem is NP-hard [8), several sophisticated optimization algorithms for it exist,
Whic:h are able to solve instances with up to 2,500 vertices and 62,500 edges at the
cost of substantial amounts of computation time, viz., several hours on a powerful
workstation or supercomputer. In addition, many heuristics have been proposed, most
of which have running times that are polynomially bounded at the risk of finding. snfb-
optimal solutions. In [8], an overview of both optimization algorithms and heuristics
is presented.

© 1.C. Baltzer AG, Science Publishers

