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COMPUTING BOUNDS FOR STOCHASTIC
A, PROGRAMMING PROBLEMS BY MEANS OF A
GENERALIZED MOMENT PROBLEM *#

JOHN R. BIRGE* anD ROGER J-B. WETS$

Bf)unds on the expected value of a convex function are obtained by means of an approxi-
mating g:eneralaed moment problem. Numerical implementation is discussed in the context of
stochastic programming, problems.

1. Introduction: The gemeralized moment problem. The (generalized
problem: find P: o/ — [0,1] such that (penere ) moment

fulo)p(as) <8,
Jed¢)p(ag) - 8.

i=s+1,....,m, and (11)

z= fvo(ﬁ)P(dﬁ) is maximized

with &7 the sigma-field of events defined on =— here a subset of R¥—is of general

intere;t n stat_istics, in stochastic optimization, etc. The underlying premise is that
some information is available about certain moments, or generalized moments, of an
unknown probability distribution. This determines a class 2, ie., the probability
measures that satisfy the constraints of (1.1). This limited information is to be used in
: o.rder to obt:flin an upper (or/and lower) bound in some other moment of the

distributions in this class. Problem (1.1) has been studied in detail in the classical
framework of statistical theory, see for example [12] where the accent is placed on
those problems of type (1.1) that can be solved analytically (in the framework provided
by Chebyshev systems). Conditions for feasible solutions were given in Kemperman
[11]. Kemperman [10] also clarified the connection between the generalized moment
problem_ and optimization theory but so far the computational tools provided by linear
or nonlinear programming have only been used sparingly in the development of

generfll splution procedures for generalized moment problems. This paper is one
i contribution in that direction.

Problem (1.1) can be especially useful in a stochastic programming problem such as

find x € D c R" such that
2 ¢(x) +fQ(x,£)F(d§)is minimized. (12)
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In (1.2), the recourse function Q(x,¢) involves another optimization problem that
renders the integration extremely difficult. Problem (1.1) can be used, however, to
develop an upper bounding approximation of (1.2). In this case, F is replaced by a
solution P of (1.1) in which the constraints determine some of the properties satisfied
by F. Integration with respect to P is generally much simpler (involving, for example, a
finite sum) than integration with respect to F.

Dupa&ova [4,5] was the first to rely on some (classical) results for the moment
problem to obtain bounds for the optimal value of certain stochastic programming,
problems; the class 2 is usually determined by first—or possibly second order—
moments and v, is a 1-dimensional convex or concave nondifferentiable function. In
such cases it is possible to obtain an explicit characterization of the extremal measure
that solves the corresponding moment problem. This is not the case in general,
although it is known that if the support of the probability measures = is convex
compact, then the linear programming problem (1.1) admits as optimal solution an
extremal measure whose support is concentrated on at most m + 1 points of = (see [1,
Theorem 6.9] for a constructive proof of this result). There is usually no closed form
expression that allows us to easily identify this extremal measure. There are no
conceptual difficulties in designing solution procedures for solving (1.1), see [1, § 6];
however some of the operations that must be carried out may be in practice extremely
onerous. Much depends on the properties of the functions voand v, i=1,...,m. In
this paper we shall be mostly concerned with the case when v, is convex, and the
functions v, i = 1,..., m are linear or piecewise linear. We extend and sharpen the
results of Dupagova [3] who works with bounded polyhedral support for the random
variable £, and of Gassman and Ziemba [6] who allow for unbounded polyhedral
support but of a restricted type. They also develop an implementable procedure for
calculating this bound in the special, but important, case when v(0) is convex and there
is only one constraint on the expectation of ¢ (with respect to P). By considering
piecewise linear constraints and piecewise linear approximations of nonlinear con-
straints, we can obtain sharper bound on problems (1.2). We still solve only linear
optimization problems and, thereby, avoid the difficulties of the nonlinear approaches
in [1] and [2].

2. Linear constraints. Most of the literature devoted to generalized moment
problems works with the assumption that = is compact [9], [1, § 6]. Here we drop this
assumption. It is possible to do so by relying on an appropriate compactification of R”,
viz. by adding to R" the space of directions of recession.

Let us suppose that Z c R¥ is a nonempty closed convex set. If not, we could
always work with the closure of co Z, its convex hull. Let

rc Z := cone of the directions of recession of =.

This corresponds to the largest (closed) convex cone such that

£+ (rcZ)c = forall¢in =;

it is called the recession cone of =. Since 0 € rc Z, it is never empty. For more about
recession cones, consult [10, § 8).

Similarly, we allow ext = to be any collection of points that contains the extreme
points of =. If = has no extreme points, which means that the lineality space L of =
(as well as = itself) contains lines, then ext = must contain the extreme points of a
polyhedral set (whose set of extreme points is never empty) obtained by intersecting =
with a linear space complementary to the lineality space of =. As in the example that
follows we shall only use the minimal number of points required for generating =, but
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“that does not need to be the case. Consider, for example,
R}. Here, we can let extrc = = {(0,1), (0, 1)} and ext =
L_e.l ext-rc = be a collection of points such that rc = =
positively span the (convex) recession cone. Note that i
no_ntrivia] (i-e., not reduced to (0}), then ext-rc =
this lineality space, see {13] for example. It is usuall
ext-rc X so that they are positively linearly indepe;
think of the elements of ext-rc =
Since = is convex, we have

=64 =1, §He
= (L))

pos(ext-rc £), i.e., the points
f the lineality space of = is
E will contain a positive basis for
y possible to choose the elements of
ndent, in which case one can really
as extremal, but for our purposes this is not necessary.

Z = co(ext Z) + pos(ext — rc ).

Every point £ in = has at least one representation of the form:

¢= fmz“(f’ de)+ [ ru(t ar) 1)

ext—rc =

with )\(_§‘ -) a probability measure on (extZ, &) and £(§, -) a nonnegative measure on
(ex?-r.c 2, #); &€ and R are the Borel fields. In fact, the theorems of Carathéodory and
Steinitz guarantee that for each ¢ there exists one representation involving no more
than N + 1 points of ext = and 2N points of ext-rc =, ie. the measures A(£, <) and
2(¢, -) have then finite support. ’ o

Now, suppose v,: = - R is a lower semi
proper (nowhere — oo, and finite-
given by (2.1) with

-continuous (has a closed epigraph) and
valued somewhere) convex function. Consider ¢ as

£= /c g dr),

then

g=fm (e + £)A(¢, de), and (22)

w(€) < [ v + N, de). (23)

By

o(t) = tim 2ELE) 208 ) wle ) = )

=20

(24)

>0

we dt?note the recession function of Yy in the direction ¢{ [14, § 8]. This is a sublinear
fl;lIllCllon (positively homogeneous and convex). Since v, is convex, the ratio
o (g(8 + 18) — Uy(£)) is a monotone nondecreasing function of ¢ (when, t > 0) and
thus the supremum is “attained” at t = oo. This justifies the equivalence of the two

formulas in (2.4). It also means that for all ¢ ext =,
vole + §) < vo(e) + rc vo(£)
and hence (2.3) yields

(%) < meuo(e))\(g, de) + rc vy(£). (2.5)
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Since ¢ v, is a sublinear function, this implies that

wo(8) < [ ()M (. de) + |

ext = rc —ext

1c vo(r)p(é, dr). (2.6)
Integrating on both sides with respect to P, we obtain

on(ﬁ)P(dﬁ) Sf _vo(e)A(de) + j;c_mzrc vo(r)u(dr) where (2.7)

ext =

A() = L)\(g, -}P(dt) and (2.8)

p() = [p(&IP(&), (29)

(assuming that A and p have been chosen measurable with respect to §). Moreover

fo= [tp(de) = [ eMde)+ [ (). (20)

ext =

1= f)\(de)= LP(dg)f Ex(g,de)=fu>(dg) (2.11)

A (defined on €) and p (defined on &) are nonnegative. '
an%hzotitr‘léqlfalily @7 ho)lds for any nonnegaFi\(e measures A and pu ihat fssrllsgl
(2.8)(2.11) and (2.1). Note that (2.7) is nontrjmal onl){ if rcvy(r) <d Oo'ded .
r € rc-ext = (as in the linear growth restriction in [6])._ Given tl.le bounbeprow ed tz
(2.7) one may be tempted to ignore (2.8) and (2.9)—1e¢, that it rpust : 1POS;L le s
“disintegrate” A and p in measures A ) @d n(é, ) lhgl satisfy (2. ;1— | is
would render (2.7) invalid as an easy example will show readlly. prc;.\ver, (ti ere aan l))/e
exists one pair (A, p) for which it is not necessary to .ve.nfy if . ﬁnh p.dc n be
“disintegrated” so as to satisfy (2.1): namely, if (A, ) maximizes the right-hand s
(2.7)! We have thus shown

THEOREM 2.1. Suppose = C R is a nonempty closed convex set, P is a probabthtz
measure on (=, &), and vy is a lower semi-continuous, proper extended-real value
convex function defined on R¥. Then

f”o(g)P(dﬁ) < Sup()\'“)f rvo(e))\(de) + L“ﬂczrc vo(r)p(dr) (2.12)

= i i re on
where A is a probability measure on (ext =, &), and p is a nonnegative measu
(ext-rc =, #) such that

f e)\(de)+f ruldr) = ng(dg)=£. (2.13)

ext = ext—rc =

is yi i f (1.1) when the constraints are
This yields an upper bound on the optimal value o :
determined by the linear system [£P(d§) = £ It should be emphasized that (2.12)
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yields in some sense the worst possible bound for [uo(£)P(d¢) among all those
generated by (2.7)-(2.11), but it may be the only one that is sufficiently easy to
compute and to integrate into an approximation scheme for solving stochastic optimi-
zation. problems. The next result goes even further in that direction. It sharpens and

extends [3, Theorem 2], [4, Theorem 4] or [1, § 5(v)] for the case of bounded convex
polyhedral support.

COROLLARY 2.2.  Suppose = C C = coe,...,e”) + pos(r',..., r9) and h: RN —
R is a lower semicontinuous, proper convex function such that h > v, on =. Then

P q
Jool8)P(dg) < supy | L AB(e) + L p(reh)(r), > 0,1, >0,
j=1

i=1

M=

4 q ~
Yhe/+ Tpr=£ YA =1/ (214)
i=1

=1

Jj=1

ProoOF. Note that

Jou®)P(ae) < [m(&)P(dE) = [ n(5)P(a)

where P has been (trivially) extended to C. It now suffices to apply Theorem 2.1. =

All the results and remarks of this section apply equally well to the case when P is
simply a bounded measure, in particular to the case when P is the restriction of some
probability to a subset of the space of events, making of course the obvious adjust-
ments. This simple observation yields directly the versions of Theorem 2.1 and
Corollary 2.2 with conditional expectations.

3. Piecewise linear constraints. The extension to the case when the constraints are
piecewise linear, or more precisely piecewise affine, is straightforward. Details are
worked out in this section. The importance of this case rests on the potential use of
piecewise linear approximations for handling the (general) nonlinear case, see § 4 for
an elementary example.

Suppose X is partitioned in L subregions =, / = 1,..., L, and in (1.1) the functions
v;, which define the constraints, are piecewise linear: for i = 1,..., m,

v(¢) =a, £-a, whenfeX, (3.1)

We then have

Jod®)P(de) = ¥ [ (ayé = o) P(dF) (32)
= i (augl - a.l)P/ where (33)
I=1

P=E(fle=), p=PE)
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Thus, the (generalized) moment problem becomes:

find Q: & — {0,1], a probability measure, such that (3.4)

&= EQ{§|§ €%}, p= o(%),

L L
Z(pya,,)ﬁ’— Zp:a.:<ﬁ.-, i=1,...,s,
=1 1=1
L B L
Z(Pla.l)fl_ Zpld.,=ﬁ.-v i=s+1....m,
I=1 =1

and x = fuo(g)Q(dg) is maximized.

Qur objective is to obtain an upper bound on the optimal value of this problem. Let
P be any probability measure that satisfies the constraints of (3.4); P could be the
measure that we are trying to approximate.

Let C, I =1,..., L, be a collection of (nonempty) convex sets such that for all /,
E, € C,. One possibility is to choose for all / = 1,..., L, C; = cl(coZ) := the closure
of the convex hull of =. Let N, (¢, -) be probability measures defined on (ext C;, &)
and p/(¢, -) be nonnegative measures on (ext-rc C;, %,) such that for all { € E,

b= [ exgde)+ [ . dr). (3)

ext G ext-rc G

Here &, (%, resp.) is the Borel field on ext C, (ext-rc C; resp.) and we assume that X
and p) are »~measurable with respect to £. For any 4 € &), set

um=éyamma> (3.6)
and for any B € &, set
MM=LM&MN&) (3.7)
We have from (3.6):
f Cl)\,(de) =\(extC) = P(Z) = p,. (3.8)

From (3.2), after replacing £ by its representation (3.5), and interchanging the
summands using the definitions of A, and p,, we obtain:

fu,(g)P(d£)=(ZL:f ased(de) + [ aypfldr) —asp|- (39)

J=1"ext G, ext-rc C;

From the above, by the same arguments as in § 2, in particular, by the convexity of vy

on C;, we prove the following generalization of Theorem 2.1.
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THEOREM 3.1.  Suppose = C RY is nonempty, {(Z,, I=1,..., L} a partition of I,
{C, 1=1,..., L} nonempty, closed, convex sets such that =,C C, for all I, P a
probability measure, v, an extended real-valued lower semicontinuous, proper convex
function on R™, and for i = 1,..., m, v, is a piecewise affine function on R™ with

v(¢)=a,t—a, whente=,

Then

ﬁMVWﬂ<prU vo(e)N,(de) + [ (rcue)(r)p,(dr)| (3.10)

Apgy) i=1]"extC ext-rc G,

where for I =1,..., L, A, and p, are nonnegative measures on (ext C,, &) and (ext-
rc C,, &,) respectively, such that

A(ext C)) = P(E) = p, (3.11)
and fori=1,... m,
L L _
Z (_/ a,e),(de) + _/ a,,rp,(dr)) = ): (piaq)é,. (3.12)
1=1\"extC, ext-rc G, I=1

Note that moment conditions in (3.4) are introduced via the restrictions (3.11) and
(3.12); P is only determined up to knowing the p, and £, associated with the region Z.

Observe also that no convexity conditions are necessary on the functions v;,
i=1,..., m. Suppose, for example with N = 1, that a,=1a,=0if | # k, the ith
condition of (3.12) would require that the measures be chosen so that

I

ext C,

eX,(de) + f ru(dr) = pi,.

ext-rc C,,

This means that the measures on the extremal structure of C, must satisfy these
conditional expectation conditions. Approximation schemes can be built by requiring
that the chosen measures satisfy conditional expectation conditions that involve finer
and finer partitions of =. Kall and Stoyan [8] and Huang, Vertinsky, and Ziemba 7
have studied constraints of that type. The constraints (3.7), however, are much more
general, in that they allow for tighter restrictions so that sharper bounds may be
obtained. The approximations in [7), [8] rely on the extreme points of the =, for all
I=1,..., L, and therefore require the evaluation of the v; for each of these points.
Here only the extreme points of some convex set containing Z, are needed. It is
possible, for example, to choose E,=coXforall/=1,..., L. Further restriction of C,
to subsets of =, however, is advisable since this restricts the set of feasible probability
measures, hence, improving the bounds.

There is also in the piecewise affine case a generalization of Corollary 2.2. We do not
need v, convex, only that it be dominated by a convex function.

COROLLARY 3.2. Suppose Z,C C,=colel,...,e}") + pos(r},...,r#), (1=
1,..., L} is a partition of =, and h: R” — R is a lower semicontinuous, proper convex
function such that h > vy on E. Then for any probability measure P: o — [0, 1], we have

Jeol€)P(a) < sup [z( % h(ehhu+ T (rcm(rf)u,k)] (313)

A lr=1\ k=1 k=1
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such that

M

n q L

gl -
Yoauefh + X oaurfuy )= Y pad fori=1,....m,
k=1 k=1 =1

Y Au=p» I=1,...L,
k=1

Ap=20, pL>20,

where for | = 1,..., L, p,~= P(=,) and £ is the conditional expectation (with respect to
P) given that ¢ € =,.

Of course to obtain this upper bound on fv,(£)P(d¢£) it is not necessary to know P.
1t suffices to know the values of p, and £’ In fact we do not even need the individual
values of the £'. It is only necessary to know for each i = 1,..., m, a, =¥  p.a, ¢’

More generally, suppose it is known that

o < fo(§)P(dt) <a;

but the precise value of this integral (with respect to P) is not known. In this case the
constraint (3.12) could be replaced by

am(a)| <oz (19
G

a < [};(f a, e (de) +f

ext G ext—r¢

Relation (3.14) is used when the generalized moment problem involves inequalities
and the v; are piecewise linear. This yields immediately an extension of Theorem 3.1
(to the inequality case) that turns out to be quite useful when dealing with higher order
moment approximations. If it is known for example, that

[ep(dt) < a,, (3.15)

then by defining a piecewise affine (lower) approximation v, such that v,(£) < ¢?, the
optimization problem (3.10) with the constraint (3.14)—defining «; = 0 and a; = a;
—yields an upper bound on all probability measures satisfying the second moment
condition (3.15). The bound can be improved by refining the approximation v;.

For other than piecewise linear functions, limited results are still available. Suppose
for example v, is concave and

Jei®)P(dg) < o (3.16)

We can substitute for £ its representation (3.5) to obtain

I=1

B Lol s [ wts.on] ey <,

Now if we use the concavity of v; and the definitions (3.6) of A; and (3.7) of p,, we
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have

i (_/;x[cv,(e))\,(de) +f

I=1 ext-re

C’rc o (rYp,(dr)] < a;. (3.17)

Therefore we can replace the constraint
bound on the expectation of v, that satis
also be used if v, is convex and we know

(3.16) by (3.17) and again obtain an upper
fies (3.16). Obviously the same technique can
a lower bound on the €xpectation of v,

4. Examp!es. The results of § 3 can be used to obtain bound
lgwer dimensional cases. In this section we consider two piecewise
tions of the. second moment function, v,(¢) = £2. We take £ to be a 1-di i
random variable distributed on the interval [B,, 8,] with 8, < 0 < B L tIHIl)enSIOHal
= P1. P(O, B,]) = p, and suppose P(0}) = 0 1 w et PO

As upper approximate we define

s for a variety of
affine approxima-

. = —Ylg» £
(8) : @)

ng»

withy,, v, > 0. If Y1 = Y, then v,(¢) =
fit the case at hand, see Figure 1. With
(3.13) becomes:

1. In general we define Y1 and vy, so as to best
C=co(B, =e!, B, = ¢?), the linear program

find Ay > 0,2,,20,1, >0, Ay, > 0 such that

“nBiA, - nBA, + Y2812, + Y2B2A 5 = a,

)‘11 + )\12 =P17

Aat Ap=p,, (42)

and w = X252 h(B,)A, is maximized. We set
= (B 0
a = (E§)P(dE) = — & 3 3
_/;lv(g) ( £) 71_/;1$P(d§)+72_/; §P(d¢) = —71P151+72P2£2

where £, and £, denote conditional ex i i
. . pectation with respect to [8,,0] and (0
;is:f::;:évglgi}:shz? [x;}e c;n]wgw (&.2) as finding a probability that assignls w}eights (tc; 5122
: 1 P ViZ. (A + Ay ) to B) and (A}, + A,,) 10 B, in such

thz}l}ha certain generahzgd conditional expectation conditilcz)n is szzit)isﬁeg? e Ay
. ber? are four possnble bases—each one corresponding to having 1 variable A
S()]rn .aslc—dependmg on tt'le values of the coefficients. The following table gives thé
olution values and optimality conditions when Y1 =¥, > 0, and for 2 of the 4 possible

31 32
FIGURE 1. Upper “Absolute Value” Approximate.
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bases (the other two have A,, and A, nonbasic respectively):

TABLE 1
Optimality Conditions: y; = v, > 0
Nonbasic Variable An A
Dual feasibility h(By) = h(B) R(By) < h(By)
s gy 3
Primal feasibility P spz(m) <Pt E
Solution: AL =Py Ap = Pl)\
An=p—An Ap=p— An
1 £ 3 = ...
An = g ntE — B+ paB - DI A
2

The dual feasibility conditions are the same for all v, and y, positive. The primal
feasibility conditions depend on the relative sizes of the slopezs. _

We can also work with a Iower approximate for § — §°, for example with the
cup-shaped function:

Yl(Bll—g) ifﬁl SiSBn,
u’.(g) =(0 ifﬁllggsﬁzp
Y3(§ - By) ifBy< £< By

where B, < By, < 0 < By < B,. See Figure 2. If v, is this cup-shaped function, the
associated linear program (that yields an upper bound) reads:

find A;; 2 0, A, 2 0,..., A5, > O such that
=1 BiA = B + sBAn + vaBiAsy = @
Ag+ A, =p, [=1,2,3, and
w =L} Z_h(B)\ is maximized, where
a = ‘P171§_1 + P373§-3~
There are 8 feasible bases. The solutions are of the same type as in Table 1.

The solution of (4.3) is useful in conjunction with the solution of (4.2). As we noted
earlier, if v,(£) < &? then the solution of (3.13) yields an upper bound on Jug(§) P(dE).

If, however, v,(§) > £, then the solution of (3.13) yields a lower .b.ound on the
supremum over all distributions satisfying the second moment condition. The two

approx.
slo;:.e=7’3
slope
7
BI ® Bn @ qu ® Bz

FiGURE 2. Cup-Shaped Approximation for £%.
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bounds can be used to determine how well the second moment condition has been
approximated.

5. Applications in stochastic programming. Bounds on the expectation of a convex
function can be particularly useful in the solution of stochastic optimization problems.
In these problems, it is often necessary to perform an optimization to evaluate a
function at a single point. Taking the expectation of such functions presents a
formidable task. By limiting the support of the distribution of a finite number of
points, as in the development above, the set of problems to optimize is limited, and one
can efficiently obtain bounds on the expectation.

A typical stochastic optimization problem has the following form:

inf e(x) + jEQ(x, £)P(dt), (5.1)

where Q(x, £) is itself the optimal value of a mathematical program whose coefficients
depend on x and £. To solve (5.1), we need to evaluate [Q(x, £) P(d£) for many values
of x chosen in an optimization procedure. An upper bound on the integral that is
easily calculable may lead to useful bounds on the optimal value of (5.1).

As an example, consider

O(x,£) =min 5y + 10y, + 10y,

s.t. nt » = gl - Xy,
Y1 + »n =§ ~ Xy,
Yy, ¥ 2 0. (52)

Note that this problem has the values

2 T X2

]

1004, — x;) — 5(&, ~ x;) if ¢ —x, >
Q(x,ﬁ) = 10(§2 - Xz) - 5(§1 - Xl) if gz — Xy >

+ o0 otherwise.

£ 20
§-x20

’

We wish to consider the case where x = (0,0) and P[£, < &, &, <&, =
f(f'f0€’4e"2€le‘uldﬁldﬁz, where £, and £, are any given nonnegative values of the
random variables £, and £,. In this way, £ and £, are independent exponential
random variables with means 1/2.

We wish to investigate how to find an upper bound on

f0((0,0), ¢)P(at) (53)

without computing the integral exactly. We first note that the exact value is 6.25. The
other methods we will try will be Gassman and Ziemba’s approach, a solution using
Corollary 3.2 and not exploiting the independent of the random variables, and a
solution using Corollary 3.2 and the independence of the random variables.

A lower bound on (5.3) is found using Jensen’s Inequality as Q((0,0), §) = 2.5. An
upper bound is available using the Gassman-Ziemba approach which reduces to (3.13)
with a,, = ¢, and L = n. Using the extreme directions of = = [0, oc) X [0, c0) as (1,0)
and (0, 1), an extreme point of (0,0), and noting that rc Q((0,0), (1,0)) = rc 9((0,0),
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(0,1)) = 10, the following version of (3.13) is obtained,

fQ((o,o),g)P(dg) < sup 10p, +10p,
A,
s.t.
0A, + 1y =1/2
0A, + By =1/2
x _
Ao B B 20 (5.4)

The only feasible solution to (5.4) is g, = p, = 1/2, A= l_, and the upper b?[‘:;dfi(;
obtained is 10. By using the independence of the random variables, we can 266 0,£
any value éz of ¢,, Q((0,0),(¢,, fz)) defined on {0, -.&—oo) hz.xs a val.ue of l(LzGa;S( [;1312])_
and a recession function value of 10 in the direction of increasing . S S: an
Ziemba bound on the integral over ,, is therefore, 1022. + 5 for any &,. solng " S
value, we can then solve the problem in ¢, and again obta.}n a va.lue of 5 at ((1); ) an z;
recession function of 10. The resulting upper bound is again 10, so the use ol
independence does not improve the bound. o
l Tg provide a more precise bound on (5.3), we include more const;a_mts in (1.1). Note
that E(¢2) = E(£3) = 1/2. A function v,(§;, £,) such that »; < £ s
if ¢, <1/2,
o) = {2 e </ (5.5)
d 286, -1 if§;=21/2,
a cup-shaped function as in Figure 2. This can be used with bounds of_ 1/2 Tc})ln
E(uv, (%)) for i =1,2 to obtain additional constraints to meaAn va}ue gonstramts. e
regjé)n of = must then be partitioned into =!, Z2, =3, a.md =4 asin Flgure_~3. 4 and
We use h(£) = Q((0,0), £) and C' = Z' with constraints on v, = €;_», /=3, 4, an
v, as in (5.5). The resulting linear program is:

max SAp, + SA; + 2.5+ Shy + 250,
+ 10p, + SAg + 2.5h5 + 10uy + 2504

+ 10p,, + 10p,, (5.6.0)
Ay + App + Ay + Ay = 0399, (56.1)

Ay + Ay = 0.2325, (56.2)

Ay + Ay =0.2325, (5.6.3)

Aa ' =0.1353, (5.6.4)
Ap+ At A+ Ag + Ay + A + 20 + 200 =1, (5.6.5)
Ap+ At Ay +An+ A+ A+ 28y +20g=1, (5.6.6)

2pq + 2p4 <05, (5.6.7)
2y + 2pa <05, (5.6.8)
Ap20 forali,j, (5.6.9)
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FIGURE 3. Partitions of =.

where (5.6.1-4) corresponds to the constraint on P{Z,}, (5.6.5-6) constrains E(£) and
(5.6.7-8) is an outer approximation to the second moment constraint (3.15). The linear
program (5.6) has an optimal value of 8.98.

We can improve on this solution value by using the independence of ¢, and £, We
consider first {Q((0,0), (£,,0))P'(d¢,) where P! is the marginal probability distribu-
tion of £,. Clearly, this has a value of 10£, = 5 since Q((0, 0), (£,,0)) is linear. Next,
consider [Q((0,0), (£,,1/2))P'(d¢,). For this problem, we use v,(£) as in (5.5) and an
upper bound of 1/2 and solve the resulting program (3.13) in £, only. The result is an
upper bound of 6.25. We note here that using the partition ! =[0,1 /2, ==
(1/2,+ o0), without the constraint on v,(¢) leads to an upper bound of 7.24. The
restriction on the second moment therefore allows for a 14% improvement in the
bound.

The bound on [Q((0,0), (£,,1/2)) P'(d¢,) can then be used to bound (5.3). We use
that 5 is a bound at fz =0, that 6.25 is a bound at fz =1/2 for {Q(0,0),
¢, éz)Pl(dﬁl) and that the recession function value of [Q(0,0), (£, £,)PI(dE) is
10. This yields another problem similar to (5.6) that can be solved with a constraint on
v,(£) to yield an overall upper bound of 8.12. This represents a 10% improvement over
the bound without using independence, and a 19% improvement over the bound which
only considers mean values. The results are summarized in Table 2. We note that using

mean values for each subset of the partition yields a bound of 7.53. This bound,

however, requires the computation of conditional means on =5 -.., =4 The bound of
8.12 only requires knowledge of the overall first and second moments and P{Z,},
{=1,...,4, that are more readily accessible.

This example provides one indication of the usefulness of including constraints on
second moments in the solution of stochastic optimization problems. As a second
example, we consider a linear support region and a nonlinear function v,- Let

(6—x)" ifjf - x| <35,
Q(x,8)={ 10(£-x) ift—x3S5, (5.7)
-10(¢ - x) if¢-x<5,

where £ is normally distributed. We wish to bound 1Q(0, §)P(d$) where £ = 0 and

TABLE 2
Bounds on [Q((0, 0),§)P(d%).
Independent
Constraints Computation Upper Bound
Means No 10.00
Means Yes 10.00
Means & Second Moments No 8.98
Means & Second Moments Yes 8.12

Ty s
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E(£?) = 1/4. We use v, = £ for the mean value constraint and

26 -1 f&>21/2,
n(8)={ 0 if —1/2<¢<1/2, (58)
-2¢6-1 if¢< ~1/2,

where v,(£) < £2. The resulting linear program, with =! = (— 00, —1/2], _Ez =(-1/2,
1/2], £3 = (1,2, + 00), and a bound of 1/4 on [v,(£)P(d£) has an optimal value of
1.5. Without the bound on [v,(£)P(d£), however, the linear program is unbounded
because of the distribution’s symmetry. In this case, it is essential to include additional
piecewise linear constraints to the mean value constraint.
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ON THE CONVERGENCE OF POLICY ITERATION IN
FINITE STATE UNDISCOUNTED MARKOV DECISION
PROCESSES: THE UNICHAIN CASE*

ARIE HORDIJK* AND MARTIN L. PUTERMAN?

We study the convergence of policy iteration for the undiscounted, finite state, discrete time
Markov decision problem with compact action space and unichain transition structure. Using
a “Newton Method type” representation for policy iteration, we establish the existence of a
solution to the optimality equation. We show that to find an average optimal policy, it is
sufficient to solve the optimality equation on the recurrent set of the maximizing policy. Under
the additional assumption of a unique maximizing policy at each stage of the policy iteration

procedure, we show that the iterates are convergent and the resulting poliey is Blackwell
optimal.

L Introduction. In this paper we study the policy iteration procedure (PIP) in
finite state, average reward Markov decision processes with compact action spaces. Its
purpose is to extend the usual finite state and action results, Howard (1960), to a
situation where the PIP is not finitely convergent. The motivation is work of Puterman
and Brumelle (1978), (1979) on the relationship of the PIP to Newton’s Method in
discounted MDP’s. Here, policy iteration requires studying both the gain and bias, and
we develop “Newton type” representatives for each. Proofs of convergence are based
on a two-stage argument where first the optimality equation is solved on the recurrent
set of an average optimal policy and then on the transient states.

We briefly review the relevant literature on policy iteration in undiscounted Markov
decision processes. Policy iteration for finite state and action undiscounted MDP’s is
usually attributed to Howard (1960). He showed that the PIP is convergent to an
average optimal policy when all states are recurrent under all policies. Blackwell (1962)
provided a rigorous framework for this problem based on the fundamental matrix,
established the existence of bias-optimal policies using policy iteration and proved the
existence of what are now called Blackwell-optimal policies. The computation of
bias-optimal policies was studied by Veinott (1966) and Denardo (1970), (1973). In
Miller and Veinott (1969) and Veinott (1969), a policy iteration method for finding
n-discount optimal policies and Blackwell-optimal policies was developed.

Implementation of the PIP in the finite state and action case with multichain
Structure presents extra difficulties because without careful selection of the relative
values, the algorithm may cycle. Schweitzer and Federgruen (1978) provided a specifi-
cation for the choice of additive constants to ensure convergence. Federgruen and
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