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Various approximation schemes for stochastic optimization problems, involving either approxi-
mates of the probability measures and/ or approximates of the objective functional, are investigated.

We discuss their potential implementation as part of general procedures for solving stochastic
programs with recourse.
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1. Introduction

We consider a simple abstract version of stochastic optimization problems and
present general results for approximating both the probability measure and the
objective functional. The error bounds are derived as the case may be from convexity,
sublinearity, linearity, and monotonicity properties of the objective functional. The
probability measure approximations are generally discrete measures that should
allow for easy calculation of the objective at each value. The functional approxima-
tions are appropriate linearizations of the objective functional. The guidelines are
provided by a class of problems known as stochastic programs with (fixed) recourse.
It also conditions the implementation methodology of the general results. It is
anticipated that these approximations can be used together in stochastic optimization
solution procedures. We also report on some experimental computational results in
the last section.

We take

find x€R" that minimizes E/(x)= E{f(x, é&(x, é(w))} (1.1)
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where

E{f(x, é(w))}:Jf(X, éw))P(dw), (1.2)

¢ is a random vector which maps the probability space ({2, &, P) on to (R™, B", F)
with F the distribution function and = ¢ R" the support of the probability measure

induced by £ (i.e. = is the set of possible values assumed by £), and f:R" xR" > RyU
{+oo} is an extended real-valued function. Assume:

forall x, w— f(x, £{(w)) is measurable, (1.3)
and the following integrability condition:

if Plo|f(x, é(w))<+0]=1 then E/(x)< +oo. (1.4)
We refer to E,= E{f(-, é&(w))} as an expectation functional. Note that it can also
be expressed as a Lebesgue-Stieltjes integral with respect to F:

Ef<x>=j S O AF(D). (1)

123
A wide variety of stochastic optimization problems fit into this (abstract)

framework; in particular stochastic programs with (fixed) recourse [41)

find xeR} suchthat Ax=b,and z=cx+ 2(x) is minimized (1.6)

where A is an m X n,-matrix, be R™,

2(x) = E{Q(x, é(w))}:J Qx, {(w)) P(dw), (1.7)
and the recourse function is defined by
Q(x, é(w)) = inf {g(w)y| Wy = h(w) = T(w)x}. (18)

The (m, x n,)-matrix W is called the recourse matrix. For each w: T(w) is my X n,,
q(w)eR™and h(w) € R™. Piecing together the stochastic components of the problem
yields a vector £eR"™ with N = n,+ m,+(m, x n,), and

fz(‘h,“-a‘hphl,-w

, hm-_n Lis oo by by ooy tmz,nl)'
We set

f(x,8)=

if = =
[cx+Q(x,§) if Ax=b,x=0, (19)

otherwise.
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which we assume henceforth, the function Q and thus also f, does not take on the
value —o0. The measurability of f(x, -) follows directly from that of £ Q(x, &)
[1, Section 3. If ¢ has finite second moments, then 2(x) is ﬁfl?te whenever
Q(x, £&(w)) is finite [41, Theorem 4.1] and this guarantees condition (1.4).

Much is known about problems of this type [41]. The properties of f, as defined
through (1.9), quite often motivate and justify the conditions under which we obtain
various results. The relevant properties are

(h, T)— Q(x, £ =(q, h, T)) is a piecewise linear convex function

for all feasible xe K = K, n K, (1.11)
where
K,={x|Ax = b, x =0},
K,={x|V&(w) e =, 3y =0suchthat Wy = h{w) - T(w)x},
q— Q(x, £=(q, h, T)) is a concave piecewise linear function, (1.12)
and
x> Q(x, £) is a convex piecewise linear function (1.13)

which implies that
x+>2(x) is a Lipschitzian convex function, (1.14)

finite on K,, as follows from the integrability condition on £(-). .
When T is nonstochastic, or equivalently does not depend on w, it is sometimes
useful to work with a variant formulation of (1.6). With T = T(w) for all w, we obtain

find xeR?, yeR™ such that

Ax=b, Tx = y,and z = cx + ¥(x) is minimized (1.15)
where

‘I’(X)=E{¢'(X,§(w))}=J‘ Py, ¢(w))P(dw) (1.16)
and

W(x, &w))=inf{g(w)y| Wy = h(w) - x, yeRT}. (1.17)

This formulation stresses the fact that choosing x corresponds to generating a fender
x = Tx to be ‘bid’ against the outcomes h(w) of random events. The functions ¢
and ¥ have basically the same properties as Q and 2, replacing naturally the
set K, by the set L,={x=Tx|xeK,}={x|Vh(w)eZ,,y=0 such that
Wy = h(w)— Tx}. The function f is now given by

ex+y(x, &) ifAx=b,Tx=x,x=0, (1.18)
7(x, x), §)=[ :

+00 otherwise.
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A significant number of applications have the function 4 separable, i.e. ¢(y, £) =
XL, ¢ (x. &) such as in stochastic programs with simple recourse ([41, Section 6],
for the nonlinear version cf. [49]). This will substantially simplify the implementa-
tion of various approximation schemes described below. When separability is not
at hand, it will sometimes be useful to introduce it, by constructing appropriate
approximates for ¢ or Q, see Section 3.

Another common feature of stochastic optimization problems, that one should
not lose track of when designing approximation schemes, is that the random behavior
of the stochastic elements of the problem can often be traced back to a few
independent random variables. Typically

o) =)'+ (@) 8+ + Ly (w)E™ (1.19)
where the
{L:2Q->R;i=1,..., M}

are independent real-valued random variables, and

£ =(q\, ... g, bl R,

man,)

are fixed vectors. In fact many applications—such as those involving scenario
analysis—involve just one such random variable £(-); naturally, this makes the
components of the random vector £(-) highly dependent. Last, but not least, in
many practical cases, we do not have adequate statistics to model with sufficient
accuracy joint phenomena involving intricate relationships between the components
of £ Hence, we shall devote most of our attention to the independent case, remaining
at all times very much aware of the construction (1.19).

This will serve as background to our study of approximation schemes for calcu-
lating

Er(-’():J‘f(x, ¢Hw))P(dw).

After discussing general convergence results (Section 2), we begin our study with
a description of possible approximates of f in the context of stochastic programs
with recourse (Section 3). We then examine the possibility of obtaining lower or
upper bounds on E, by means of discretization (of the probability measure) using
conditional expectations (Section 4), measures with extremal support {Section 5),
extremal measures (Section 6) or majorizing probability measures (Section 7). In
tach case we also sketch out the implementation of the results in the framework of
stochastic programs with recourse, relying in some cases on the approximates to f
obtained in Section 3. In Section 8, we give some further error bounds for inf E,
that require the actual calculation of E/(x) at some points.
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2. Convergence results

The purpose of this section is to free us at once from any further detailed
argumentation involving convergence of solutions, infima, and so on. To do so we
rely on the tools provided by epi-convergence. Let {g; g*, »=1,...} be a collection
of function s defined on R” with values in R =[—o0, +00). The sequence {g*. v =1, . .. }
is said to epi-converge to g if for all x€R", we have

liminfg”(x")=g(x) forall {x",»v=1,...} converging to x, (2.1)
and
there exists {x", »v=1,...} converging to x such that
limsup g"(x") < g(x). (2.2)

vo0

Note that any one of these conditions implies that g, the epi-limit of the g% is
necessarily lower semicontinuous. The name epi-convergence comes from the fact
that the functions {g", v =1, ...} epi-converge to g if and only if the sets {epi g*, v =
1,...} converge to epi g ={(x, a)|g(x)=<a}; for more details consult [44, 1]. Our
interest in epi-convergence stems from the following properties [2].

2.3. Theorem. Suppose a sequence of functions {g", v=1,...} epi-converges 10 g. Then

lim sup (inf g*) <inf g, (2.4)
and, if

x*eargmin g = {x|g"(x)= inf g"}
for some subsequence of functions {g" k=1,...} and x =lim, ... x*, it follows that

xeargming and lim,_.. (infg")=infg,

Moreover, if argmin g #0, then lim, . (infg")=infg if and only if x€argming
implies the existence of sequences {g,20,v=1,...} and {x*, v =1,...} with

lime, =0 and lim x" =x,

v yoC

such that forall v=1, ...,

X, €¢e,-argmin g° ={x|g"(x)<infg"+¢,}.

2.5. Corollary. Suppose a sequence of functions {g*, v=1,..} epi-converges 1o g, and
there exists a bounded set D such that

argming" " D#9
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for all v sufficiently large. Then

lim(infg,)=infg
and the minimum of g is attained at some point in the closure of D.

Proof. Since D is bounded, there exists a bounded sequence {x*, v=1,...} with
x"eargming* n D.

This means that a subsequence converges {x" k=1 ...} to a point x both in the

closure of D and in argmin g as follows from epi-convergence. Theorem 2.3 also
yields

lim g (x)=g(x)= inf g.
There remains only to argue that the entire sequence {(inf g*), v=1,...} converges
to inf g. But this simply follows from the observation that the preceding argument
applied to any subsequence yields a further subsequence converging to infg. [

The following proposition provides very useful criteria for verifying epi-conver-
gence.

2.6. Proposition (3, Proposition 3.12]. Suppose {g*:R" >R, v=1,...} is a collection
of functions pointwise converging to 8 Le forall x, g(x)=lim,., g*(x). Then the g

epi-converge (o g, if they are monotone increasing, or monotone decreasing with g lower
semicontinuous.

For expectation functionals, we obtain the next assertion as a direct consequence
of the definition of epi-convergence and Fatou's lemma.

2.7. Theorem. Suppose {f.f*, v=1,... } is a collection of functions defined on R” x ()
with values in R {+00} satisfying conditions (1.3) and (1.4), such that for all ¢ =
the sequence {f*(-,¢), v=1,...) epi-converges to f( -, £). Suppose moreover that the
functions {* are absolutely bounded by uniformly integrable functions. Then the expecla-
tion functionals E; epi-converge 10 E,.

When instead of approximating the functional f, we approximate the probability
measure P, we get the following general result that suits our needs in most applica-
tions, see (45, Theorem 3.9], (46, Theorem 3.3].

2.8. Theorem. Suppose {P.,v=1,... }isa sequence of probability measures converg-
ing in distribution to the probability measure P defined on (2, a separable metric space
with o the Borel sigma-field. Let

(x, @)= f(x, £(0):R" X2 >R U {+00)
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be continuous in w for each fixed x in K, where
K ={x|E/(x) < 4o} = {x|f(x, £(w)) < +00,a.5.} %0,

and locally Lipschitz in x on K with Lipschiiz constant independent of w. Suppose
moreover that for any x € K and & >0 there exists a compact set S, and v, such tha
forall v=w,

I [f(x, é(w))|P,(dw) <&, (2.9)
M\S,

and with V = {w|f(x, w) = +o0}, P(V)>0 if and only if P,(V)> 0. Then the sequence
of expectation functionals {E;, v=1,...} epi- and pointwise converges to E; where

E}’(X)=Jf(x, ¢(w))P.(dw).

Proof. We begin by showing that the E; pointwise converge to E,. First let xe K
and set

glw)=f(x, w).

From (2.9), it follows that for all £ >0, there is a compact set S, and index &, such
that for all v = v,

J lg(w)|P,(dw) <.
M\S,

Let M, =sup_.s |g(w)]. We know that M, is finite since S, is compact and g is
continuous, recall that x€ K. Let g° be a truncation of g defined by

glw) iffglw)=M,,
glw)=9M, ifglw)>M,,
-M, fglw)<-M.,.
The function g° is bounded and continuous and for all we 2

g () =|glw).

Hence from the convergence in distribution of the P,

lim [Bf;j g‘(w)P,,(dw)]:J. g (w)P(dw) =" (2.10)
n N

b

and also for all v = v,

J g (w)P.(dw)<e
ms,

—_———
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Now let
B. = E;(,r):J g(w)P,,(dw)+I g(@)P,(dw).
Se M\S,

We have that, for all v = v,,

B.-Bl=

<2¢

I [g(w) - g (w)]P,(dw)
0.s,
and also that

|Efx)—B"|<2e.

Combining the two last inequalities with (2.10) shows that for all £ >0, there exists
v, such that for all v= v,

|E;(x)~ B.| <6e,
and thus for all xe¢ K|
!iﬂ Ei(x)=E/(x).
If x¢ K, this means that
PIV={o|f(x, é(w)) = +0}]>0
which also means that for all »
P,(V)>0,

from which it follows that for all v

lim Ef(x)=+00=E,(x).

v+ x

And thus, for all xeR", E/(x)=lim,... E{(x). This gives us not only pointwise
convergence, but also condition (2.2) for epi-convergence.

To complete the proof, it thus suffices to show that condition (2.1} is satisfied for
all xe K. The function x— f(x, £(w)) is Lipschitzian on K, with Lipschitz constant
L independent of w. For any pair x, x" in K, we have that for all w

[/(x, Elw)) = f(x", £lw))]| < L dist(x, x")
which implies that
SIx, Elwh = Ldist(x, x")< fix", £lw)).

Let us now take x" as part of a sequence {x", v=1,.. .} converging to x. Integrating
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on both sides of the preceding inequality and taking lim inf, ., W€ get

E/(x)=lim Ej(x)— L lim dist(x, x")
=liminf ( Ej(x)— L dist(x, x"))

<lim inf E;(x"),

v

which completes the proof. U

2.11. Application. Suppose {P,, v=1,...} is a sequence of probability measures that
converge in distribution to P, all with compact support . Suppose

9% (x)= I Q(x, {(w))P,(dw)

with the recourse function (Q defined by (1.8) and 2 by (1.7). Then the 2" both epi-
and pointwise converge to 2.

It suffices to observe that the conditions of Theorem 2.8 aresatisfied. The continuity
of Q(x, &) with respect to £ (for x € K;) follows from (1.11) and (1.12). The Lipschitz
property with respect to x is obtained from {41, Theorem 7.7]; the proof of that
theorem also shows that the Lipschitz constant is independent of £, consult also [40].

2.12. Implementation. From the preceding results it follows that we have been given
great latitude in the choice of the probability measures that approximate P. However,
in what follows we concern ourselves almost exclusively with discrete probability
measures. The basic reason for this is that the form of f{(x, £)—or Q(x, &) in the
context of stochastic programs with recourse—renders the numerical evaluation of
E, (or E) possible only if the integral is actually a (finite) sum. Only in highly
structured problems, such as for stochastic programs with simple recourse [42], may
it be possible and profitable to use other approximating measures.

3. Approximating the recourse function Q

When f is convex in £, it is possible to exploit this property to obtain simple but
very useful lower bounding approximates for Ej

3.1. Proposition. Suppose £— f(x, £) is convex, (¢ 1=1,..., v} is a finite collection
of points in =, and for =1, ...,

v' €a.f(x, fl),
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ie. v is a subgradient of f(x,-) at ¢'. Then
E/(x)=E ! hy_ple!
/(x) {.T[va[v Ew)+{[f(x, &Y= o'eN} (3.2)

I - .
Proof. To say that v’ is a subgradient of the convex function of f(x,-) at £', means
that ’ '

S, O - fix, £ = v' (¢~ ¢
Since this holds for every I, we obtain

flx, )2 max[v'e+ (f(x, £ - v'e").

Integrating on both sides yields (3.2). [

3.3. Application. Consider the stochastic program with recourse (1.6) and suppose
that only h and T are stochastic. Let {¢'=(h' T'), I1=1,... , v} be a finite number of
realizations of hand T, xe K, and for I=1,.. ., v

n'eargmax[#(h' - T'x)| =W < q).
Then

Q(X)EE{IT’asx”‘n-'(h(w)~T(w)x)}‘ (3.4)

This is a direct corollary of Proposition 3.1. We give an alternative proof which

could be of some help in the design of the implementation. Since x € K, for every
£=(h,T) in =, the linear program

find 7eR™ such that W < q and w=m(h - Tx) is maximized (3.5)

is bounded, given naturally that it is feasible as follows from assumption (1.10)
Hence, for I=1,.. v ‘

Q(x, &)=='(h'- T'x),

and moreover since 7' is a feasible solution of the linear program (3.5), forall ¢€ E,
Q(x, &)= =n'(h - Tx).

Since this holds for every |,

Q(x, £)= max ='(h- Tx).

Isisy

Integrating on both sides yields (3.4).

3.6. Implementation. In general finding the maximum for each ¢ in expression

(3.4)—or equivalently for each (h, T)e Z—could be much too invoived. But we
. i . _ .

may assign to each 7" a subregion of =, without resorting to (exact) maximization.
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The lower bound may then not be as tight as (3.4), but we can refine it by taking
successively finer and finer partitions. However, one should not forget that (3.4)
involves a rather simple integral and the expression to the right could be evaluated
numerically to an acceptable degree of accuracy, without major difficulties. The
calculation of this lower bound imposes no limitations on the choice of the ¢'
However, is is obvious that a well-chosen spread of the (e 1=1,..., v} will yield
a better approximation. For example, the ¢' could be the conditional expectation
of £(-) with respect to a partition ¥ ={S;, [=1,..., v} of = which assigns approxi-
mately the same probability to each S,. The use of a larger collection of points, i.e.
increasing v, will also yield a better lower bound.

3.7. Convergence. Suppose that £ f(x, ¢) is convex and E/(x) is lower semicon.
tinuous. For each v=1, .. let " ={S; I=1,...,L,} denote a partition of E with

£ = Ef¢(w)|Sh),

the conditional expectation of ¢( - ) given S}. Suppose moreover that ¥* < ¥**' and tha
lim { max Plw|t(w)e Si])=0. (3.8)
oo Isis(,

Then, with v*' € 3,f(x, £") and

Ej(x)=E{ max [0"&(w) +f(x, €)= v}, (3.9)
I=si<L,
we have that the sequence of functions {E},v=1,...} is monotone increasing, and,

Sor all x,

Ei{x)=hm Ej(x).

RS

Hence the sequence {E}, v=1,...} is both pointwise- and epi-convergent.

Proof. From Proposition 3.1, it follows that E} < E, for all v. The inequality
E/<E["'<E

then follows simply from the fact that ¥**' > ¥*. Now observe that

max [v"'¢+ f(x, &) - v )= g% (x, &) (3.10)

\=is [,
where g" is defined as follows:

g'(x, €)= v'"§+f(x,§"')—v"'§"' ifee sy

1t follows that

L,,
Ej(x)= E{g"(x &(w)} = L Pl&(w)e S]f(x, £)

=1
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which gives us

E/(x)=lim Ej(x)= lim E{g"(x, {(w))} = E;(x):

the iast equality following from assumption (3.8).
We have thus shown that the sequence {E}, v=1,...} is monotone increasing
and pointwise converges, and this implies epi-convergence, see Proposition 2.6. O

U

If f(x, -} is concave, the equality in (3.2) is reversed and, instead of a lower bound
on E,, we obtain an upper bound. In fact, we can again use Proposition 3.1, but
this time applied to —f.

311 Application. Consider the siochastic program with recourse (1.6) and suppose
that only the vector q is stochastic. Let {¢'= g\ 1=1,... , v} be a finite number of
realizations of q, xe K, and, for1=1,... v

v'eargmin[g'y| Wy =p— Tx, y 2 0].
Then

2(x)< E{ min g(w)y'}. (3.12)

Islss

This is really a corollary of Proposition 3.1. A slightly different proof proceeds
as follows: Note that forall g = ¢ € =, for every I, y' is a feasible, but not necessarily
optimal, solution of the linear program

find yeR? suchthat Wy=p—Tx and w = gy is minimized.

Hence

Q(x,£)= min gy'
I=<l<yp
from which (3.12) follows by integrating on both sides.
The remarks made about Implementation 3.6 and the arguments used in Conver-
gence 3.7 still apply to the concave case since we are in the same setting as before
provided we work with —f or -Q.

Proposition 3.1 provides us with a lower bound for E, when £—[(x, &) is convex.
The next result yields an upper bound.

3.13. Proposition. Suppose £ f(x, &) is convex, {¢' 1=1,. . ., v} is a finite collection
of points in =. Then
E,(x)sE;'(x):Jf"(x, £(w))P(dw) (3.14)

where

S"(x, &) = inf [Z Af(x, §')‘§=i A,f’,lzi A,]A (3.15)

AeRY
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If the function ¢ — f(x, ¢) is sublinear, the f* can be defined as follows:
f”(x,§)=Aianv[X A:f(X.f’)‘§= )3 A§']‘ (3.16)
ERLi=1 =1
(Note that f*(x, &) is +c0 if the corresponding program is infeasible.)

Proof. Convexity implies that for all A, =0, ...
Yi_, Ad' we have

JA.=0 with ¥, A,=1, and ¢=

f =3 Af(x &) (3.17)
=1

from which (3.14) follows using (3.15). Sublinearity (convexity and positive

homogeneity) also yields (3.17) but this time without Z,":l A, =1, and this in turn

yields (3.14) using (3.16) this ume. [

3.18. Application. Ray functions. Consider the stochastic program with recourse in
the form (1.15) and suppose that only h is stochastic, i.e., with fixed matrix T and
recourse cost coefficients g. Now suppose that for given x, we have the values of

{o(x, &Y e'=h"1=1,..., v} for a finite collection of realizations of h(-). Let {e€ 5
and define

vix, €)= mf [Z Ap(x, €Y |e=x+ Z Mg - X)] (3.19)
Then

Vx)=¥"(x) =J ¥ (x, é(w))P(dw).

The above follows from the second part of Proposition 3.13 provided we observe
that from the definition (1.17) of ¢, we have that

h—¢(x, h+x)

is sublinear. From this it follows that for any A e R}

x, (E-x)+x)< Z Aab(x, (£'=x)+x)

whenever
-x=1 A:({‘—X),
I=1
and this leads to the construction of ¢ in (3.19). O

3.20. Implementation. Finding for each ¢, the optimal value of a linear program as
required by the definition of ¢” in (3.19), could involve much more work than is
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appropriate to invest in the computation of an upper bound. One way to remedy
this is to subdivide = such that each ¢ is automatlcally assigned 1o a particular
region spanned by a subset of the {¢' I=1,

, ¥} or to the subset whose points
are such that

§*x6p05(§'—x,-..,§”—x)={l Z ), A eRY }

One case in which all of this falls nicely into place is when a stochastic program
with recourse of type (1.15) can be approximated by stochastic program with simple
recourse [41, Section 6] where the function ¢(y, £) is separable,

m,

Wlx, £ »Z bilx, &) (3.21)

and

ilx, E)=inflq) y +q7y |y =yl =hi—x, yi =0,y =0], (3.22)

here & =(q;, g7, h;). The function V¥ is then also separable and can be expressed as
Yix)=12 ¥.(x),
r=1

where

¥.(xi) = E{di(xi, &(w))}.

(This is the linear version of the simple recourse problem.)
3.23. Application. Approximation by simple recourse. Consider a stochastic program

with recourse of the type (1.15), with only h stochastic and complete recourse [1,
Section 6]. This means that the recourse matrix W is such that

pos W={1|1=Wy,y=0}=R™,

ie. the recourse problem is feasible whatever be h or x- Fori=1,... m, define
qi =inf{gy| Wy =e', y =0}, (3.24)
and
g, =inf{gy| Wy =—¢',y=0}, (3.25)

where ¢' is the unit vector with a 1 in the ith position, i.e.

e'=(0,...,0,1,0,...,0)".

The recourse function ¢(y, £) is then approximated by the recourse function (3.21)
of a stochastic program with simple recourse using for ¢, and g, the values defined
by (3.24) and (3.25). This is a special case of the ray functions built in Application
3.18: each (£—x) falls in a given orthant and is thus automaticallly assigned a
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particular positive linear combination of the chosen points (xe'—y,i=1, s m,).
To improve the approximation we have to introduce additional vectors ¢', which
brings us back to the more general situation described in Application 3.18.

3.26. Application. Consider a stochastic program with recourse of type (1.15), with
only ¢ stochastic. The function

g—ix,q=£):R=>R

is not only concave and polyhedral (1.12), it is also positively homogeneous. For

any finite collection {¢' =¢',I=1,..., v} we have that

¥(x, q)= sup [Z Ad(x, q')\q=l}: /\,q']. (3.27)
tLi=a =1

AR

This again follows directly from Proposition 3.13; note that (y, q') = q'y' where
y'eargminfq'y| Wy =h—x, y=0}.

3.28. Implementation. Calculating for each g, the upper bound provided by (3.27)
may be prohibitive. We could assign each g = to some subregion of = spanned
by the positive combinations of some of the {g', =1, ..., v}. Such a bound is easier
to obtain but is not as sharp as that generated by (3.27).

Another approach to constructing upper and lower bounds for stochastic programs
with recourse is to rely on the pairs programs as introduced in [6, Section 4]. One
relies again on convexity properties and once again one needs to distinguish between
(h, T) stochastic, and g stochastic. To begin with, let us consider h, and T stochastic.
For every (h, T)=¢¢ =, and (ﬁ, 'f) = ée co = (the convex hull of =), let

p(& &) =inflex+ pgi +(1 - H)g,]
such that Ax =b,
Tx+Wp =,
Tx+ Wy, =h,

x=0, v=0, y, =0, (3.29)

with pe{0,1]. If (1.6) is solvable, so is (3.29) as follows from {41, Theorem 4.6].
Suppose x° solves (1.6) and for all £=(h, T), let

Vg e argmin[q_v| Wy =h—Tx]

veR?

It is well-known that p°(£) can be chosen so that £~ y%(£) is measurable [41, Section
3]. Now suppose

E=(h, T)=E{¢} and 7=E{y(¢)).
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The triple (x° 7, y%(¢)) is a feasible, but not necessaril

eas but y optimal, solution of the
linear program (3.29) when (h, T)=(h, T). Hence

(& €)= ex’+ gy + (1 - Plgy°(¢)
and integrating on both sides, we obtain

E{p(£ )} = ex®+ 2(x9). (3.30)

This bound can be refined in many ways: first, instead of just using one point ¢
one could use a collection of points obtained as conditional expectations of a
partition of =, and create a pairs program for each subregion of = Second, instead
of just one additional point f we could use a whole collection {é', o f"} to build
a program of the type (3.29). This is described in detail in [6] for the case when
only h is stochastic but can easily be generalized to the case # and T stochastic.
When only q is Astochastic, we consider a dual version of (3.29), viz. for every
g=¢€Z and §=¢eco E| let

p*(£ &) =suplab+ pah+(1 - p)mh]

suchthat cA+#T s
W =g,
mW=gq (3.31)

with p€[0, 1]. The same arguments as above with fz £, but relying this time on the
dual [37] of problem (1.6), lead to

E{p™(& )= ex"+ 2(x*) =inf(c- + 2), (3.32)

4. Discretization of the probability measure P throughout conditional expectations

Jensen’s inequality for convex functions is the basic tool to obtain lower bounds
for E; when f(x, -} is convex or upper bounds when E; is concave. Here, it leads
to the use of (molecular) probability measures concentrated at conditional expecta-
tion points. In the context of stochastic programming this was first done by Madansky
[31) and further refined by Huang, Ziemba and Ben-Tal [20] and Kall [22].

4.1. Proposition. Les & = {S'1=1,..., v} bea partition of =, with
£ =E{&(w)|S"} and p = Plé(w)e S
Suppose first that & f(x, €) is convex. Then

E_,(x)zz pif(x, &' (4.2)
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If £ f(x, &) is concave, then

E(x)< Y pifix, &), (43)
=1

Proof. Follows from the iterated application of Jensen’s inequality: f(x, E{(0)}) =<
E{f(x, ¢é(w))} when f(x, ) is convex; consult [35}. OO

4.4. Application. Consider the stochastic program with recourse with only h and T
stochastic. With $={S" I=1,..., v} a partition of = and for I=1,..., v, let
&=, T = E{(h(w), T(0))|S"}

and p,= P[¢é(w) € $']. As follows from (1.11) and (4.2), we obtain
T pQ(x, £)=2(x), (4.5)
i=1

and thus if

z¥ = inf \:cx+i pQ(x, &) Ax:b,xé()l
i

"
xeR"! =1

where
Q(x, &)= inf (gy|Wy=h'-T'x, y=0],
veR 2
we have that
7= z*=infex + 2(x)| Ax = b, x = 0].

Each z" is thus a lower bound for the optimal value of the stochastic program. (An
alternative derivation of (4.5) relying on the dual of the recourse problem that
defines Q(x, £) appears in [7].)

4.6. Convergence. Suppose ¥ ={S' I=1,...,v}for v=1,..., are partitions of =
with ¥ < #“*' and chosen so that the P,, v =1, ... converge in distribution to P.
The P, are the (molecular) probability distributions that assign probability p, =
Plé(w)e S$'7to the event [¢(w) = £'] where §' is the conditional expectation (with
respect to P) of &(-) given that £(w) e S'. The epi-convergence of the {2°, v =1, ... }
to 2, with the accompanying convergence of the solutions, follows from Theorem
2.8, where

2'(x)= ¥ pQ(x g’):J Q(x, £(w))P.(dw).
t=1

To make use of these results we need to develop a sequential partitioning scheme
for =, i.e. given a partition ¥* of = how should it be refined so as to improve the
approximation to 2 as much as possible. P. Kall has also worked out various
refinement schemes {24] that overlap and complement these given here.

S,
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4.7. Implementation. Stochastic programs with simple recourse, with h stochastic, g
and T are fixed. Recall that for a stochastic program with simple recourse ¥ takes
on the form:

¥ix) = E{ Y (X f.)},
i=1
where & = h; and, as follows from (3.21),

q.(hi—x)
q. (x,—h)

if h, =
w.u.,g.J:{ U= X

if b < x..

I .
B h

Fig. 4.8. The function ¢,(y,, -).

Let [, B,] be the support of the realizations of h;( - ), possibly an unbounded interval.
If we are only interested in a lower bound for ¥ that approximates it as closely as
possible at the point y, then the optimal partitioning of [« 8] is given by

Si=lea, %) and S7=[x, Bl

In this way the approximating function ¥ takes on the form:

9 h—qlx. if x, < h!,

Vi) =(q hipa—q hip)+(q pa—q po)x. ifhlsx,<h],
~q, h+qix, ify,=h’

where, for I=1,2,
hi= E{h(w}|S"} and p;= Plh{w)e S'],

and h, = E{h(w)}. Note that

‘1’.()2.)=QTJ. ()?.—h.(w))P(deq.*J. {(h{w)-x)P(dw)
hiw)<y,

htw)=x,

=¥ilx).
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Fig. 49. The function

Thus ¥ < ¥, with equality holding for x; < a, x, = B, and at x, = . If the interval
[a, B:] has already been partitioned into v intervals {{a’=a, a'),... [a’ ", a’ =

B.1} and x;€[a;, a;*'). Then again the optimal subdivision of the interval [a', a!*!)
into [a}, x;) and [£, a'*") yields an exact bound for ¥, at Xx- An alternative is to
split the interval under consideration around x; such that ¥, turns out to be the
conditional expectation of the new region. This would provide a quite good bound
for ¥, in the neighborhood of ¥; and this would be very useful if the value of y; is

not expected to change much in the next iterations.
4.10. Implementation. General recourse matrix W, with h stochastic; g and T are
fixed. The function
he—g(x, h)
is not separable, it is convex and polyhedral (1.11). Note also that
he—d(x, h—x)

is a sublinear function. Because of this we shall say that Y(x, ) is sublinear with
root at x. We assume that = <R™ is a rectangle and that we are given a partition
(s 1=1,.. ., v} illustrated in Fig. 4.11. We shall take it for granted that the next

s' s?

w
»~
AP
>

Fig. 4.11. Partition ¥ ={S"' S*} of =

partition of = will be obtained by splitting one of the cells S'. Other partitioning
strategies may be used but this single cell approach has the advantage of increasing

only marginally the linear program that needs to be solved in order to obtain the
lower bound.
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(i) Let us first consider the case when ye S'c = We plan to split S’ with a
hyperplane containing x and parallel to a face of S, or equivalently parallel to a
hyperplane bounding the orthants. To do this, we study the behavior of h+— U(x, h)
on each edge E, of the cell S'. Let

h—@.(h)=y(x, h): E.>R.

This is a piecewise linear convex function. The possible shape of this function is
illustrated in Fig. 4.12; by x” we denote the orthogonal projection of xon E.If

23 ' 6, ;
| ! ! i
! ! ! l
1
1 1 |
I I i !
i | | i
‘—— +——e——
| ¥ ! x|
L i
G T
| ] |
|
1 | |
! i ] |
[ | I i
! X1 i ¥

Fig. 4.12. The function 6, on E,.

6, is linear on E,, it means that we cannot improve the approximation to 6, by
splitting S' so as to subdivide E*. On the other hand if the slopes of 8, at the end
points are different, then splitting S’ so as to subdivide E, would improve the
approximation to V. On the subdivided cells, the resulting functions 8, would be
close to, if not actually, linear. Among all edges E,, we would then choose to
partition the cell S' so as to subdivide the edge E, that exhibits for 6, the largest

difference of siopes at the end points. What we need to know are the subgradients
of the function

h—y(x, h)
at each vertex {h°,s=1,..., r} of the cell S' This is obtained by solving the linear
programs

find 7eR™ suchthat 7W=gqgand w, = w(h*— y)is maximized (4.13)

for s=1,...,r The optimal #=* is a subgradient of ¢(x, -) at h* [41, Proposition
7.12]. From this we obtain the directional subderivative of W(x, - ) in each coordinate
direction (which are the slopes of the functions 6, ); they are simply the components
of the vector {w{,i=1,..., my}. We now construct a subdivision of S' with a
hyperplane passing through x and orthogonal to the edge of S' that exhibits
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maximum slope difference. If the underlying probability structure is such that the
random vector h(-) is the sum of a few randomi variables, such as described by
(1.19), the calculation of the directional subderivatives of £— (x, £) again begins
with the calculation of the optimal solution of the programs (4.13) each h’ being
obtained as the map of a vertex of S' through the map (1.19). To obtain the
subderivatives, we again need to use this transformation.

(i1) We now consider the case when y ¢ =. This time we cannot always choose
a hyperplane passing through y that generates a further subdivision of some cell
S' Even when this is possible, it might not necessarily improve the approximation,
the function £— ¢(x, £) being linear on that cell for example. Ideally, one should
then search all cells S’ and each edge in any given cell to find where the maximum
gain could be realized. Generally, this is impractical. What appears reasonable is
to split the cell with maximum probability, on which ¢(yx, -) is not linear.

Concerning the implementation of this partitioning technique, we are seeking the
best possible approximation to ¥ in the neighborhood of x. We are thus working
with the implicit assumption that we are in a neighborhood of the optimal solution
and that xy will not change significantly from one iteration to the next. If this is
the case, and the problem is well-posed, then we should not really have to deal with
case (ii), since it would mean that the optimal tender x° would be such that we
would consistently underestimate or overestimate the demand!

4.14. Application. Consider the stochastic program with recourse with only g
stochastic. With $={S' I=1,..., v} a partition of E, and for [=1,..., v, let

¢'=4q'=E{q(w)|S"}
and p,; = P[£(w) e S']. As follows from (1.12) and (4.3) we have
T piQ(x, €)= 2(x). (4.15)

Thus, with

¥ = ir;]:f' [Cx+ Y pQ(x, £ szb,xzo]
xeR =1

where
Qlx, &)= inf [q'y| Wy=h-Tx,y=0],
yeR™2
we have that
z¥ =z z* =inf[ex+ 2(x)| Ax = b, x = 0].

Each z” is thus an upper bound for the optimal value of the stochastic program.

4.15. Implementation. The function

g—¢(x, ) =max{n(£—x)|7W < g}
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is polyhedral and sublinear. What changes from one x to the next are the slopes
of this function, so we cannot use the present y as a guide for the design of the
approximation. One possibility in this case is to simply subdivide a cell of the
partition with maximum probability.

5. Discrete probability measures with support on extreme points

The maximum of a convex function on a compact convex set is attained at an
extreme point; moreover, the function value at any point (of its domain) obtained
as a convex combination of extreme points is dominated by the same convex
combination of the function values at those extreme points. These elementary facts
are used in the construction of measures that yield upper bounds for the expectation
functional E,

5.1. Propesition. Suppose £ — f(x, £) is convex, = the support of the random variable
£(+) is compact, and let ext = denote the extreme points of co =, the convex hull of

Z. Suppose moreover that for all €, v(¢, - ) is a probability measure defined on (ext =, &)
with € the Borel field, such that

J _ ev({ de)=¢,

and the multifunction
w—v(¢(w), A)

is measurable for all Ac &. Then

E/(X)SJ J(x, e)A(de) (5.2)

ext =

where A is the probability measure on € defined by

)\(A)=J v(f(w), A)P(dw). (5.3)
0

Proof. The convexity of f(x, -) implies that for the measure v

f(x,f)SJ S(x, e)v(¢ de).

ext =
Substituting £(-) for £ and integrating both sides with respect to P yields the desired
inequality (5.2). OO

S.4. Corollary. Suppose £— f(x, £) is convex, = the support of the random variable
£(+) is compaci, and let ext Z denote the extreme points of co E, the convex hull of
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Then

]

E(x}< sup f(x,e)=f(x, e,). (5.5)

ecext =

Proof. Simply follows from f(x, e,) = f(x, £) for all £€ =, or we could use Proposi-
tion 5.1 with » concentrated on e,. [J

5.6. Application. Consider the stochastic program with recourse (1.6) with only h
and T stochastic. Assume that = the support of the random variables A(-) and
T(-) is compact, with

extx Z={¢'=(n" T I=1,..., L}
the extreme points of co =Z. We explicitly assume that L is finite. As usual
Q(x, £')=min{qy| Wy = h' - T'x, y=0)}.
Then with
£ eargmax{Q(x, ¢'),I=1,..., L},
as follows from (5.5), we have that 9(x) < Q(x, £). Hence
z* =inflex + 2 (x) | Ax = b, x = 0}
<inflex+gy|Ax=b, T°x+ Wy =h* x =0, y = 0}. (5.7)

This is a very crude bound that can easily be improved by partitioning =. Say
F={S* k=1,...,v} is a partition and for each k we compute ¢*e
argmax,. ¢ Q(x, £). Then

a(x)= 3 J Qx, é(w))P(dw) = ¥ Jko(x,g"m(dw»
k=1 =1 s

st K

With p, = P{£(w) € $*], we obtain

z*sinr{cx+ Y payt |Ax=0b, T*x + Wy“=h‘,x>0,y*ao}. (5.8)
k=1

The potential use of this inequality as an approximation tool for solving stochastic
programs with recourse was pointed out by Kall and Stoyan [23].

5.9. Application. We take the same situation as in Application 5.6. Let us define a
probability measure v(& ) on ext Z ={¢' ... £'), ie. scalars {py(&), ..., p(E)}
such that Z,L:, p(€)Y=1 and

£=(hT)=71 p(g)- (T (5.10)
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Then
L
i
Qx, &)= Y p(£)0(x, &)
=1

and

L
2(x)= ¥ pO(x, £ 5.11)
where, for each I=1,... L,
P = J p(é(w))P(dw).

The {p,, I=1,..., L} determine a probability measure on ext =. The right-hand term
of (5.11) may however be quite difficult to compute since the dependence of the p,
on ¢ may not be easy to express: they must be chosen so as to satisfy (5.10). There
are some important cases when all of this can be worked out relatively easily. We
review them next.

=

(i) = (orco ) is a simplex. Each £ in = has a unique representation in terms
of the extreme points ext =, viz. in terms of its barycentric coordinates. For example,
if co = is the fundamental simplex in RY whose extreme points are

{0,(¢/,j=1,...,N} withe/=(0,...,0,1,0,....0)"

]

then each point
E=(&,. .., &) in E

has the barycentric representation
polE)=1-1¢l (p=¢1=1,... N)

where [£| :Z,Zl & All other cases can be reduced to this example by an invertible
linear transformation.

(i) = is an interval. This is a special case of the preceding one. Let = =[q, 8],
then £=(1-p)a+pB with 0<p=<1: and thus p=(£—a)/(B—a) from which it
follows that

(1-p)=(B-8)/(B-a) and j=(f-a)/(f-a)
with £ = E{¢}. Thus
2(x)<(1-p)Q(x, a)+ pQ(x, B). (5.12)

This inequality is due to Edmundson. Madansky [31] used it in the context of
stochastic programs with simple recourse random right-hand sides h. A much refined
version of this upper bound can be obtained by partitioning the interval [, 8] and
computing for each subinterval the corresponding version of (5.12). The expression
for the j will now involve conditional expectations. For stochastic programs with
simple recourse this was carried out by Ben-Tal and Hochmann (4], Huang, Ziemba,
and Ben-Tal [20] and by Kall and Stoyan [23]; see also [17].
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(iii) = is a rectangle and ¢ — Q(x, £) =Z,—Z. Qi(x, &) is separable. This is the case
of stochastic programs with simple recourse with stochastic h, for example. Then
N

2x)= % J Qi(x, &i(w)) P(dw).

We can now find bounds for 2 by seeking bounds for each Q,(x, -) separately. We
are in the situation considered in (ii). The inequality (5.12) becomes

2(x)= ¥ [(1-F)QUx @)+ Q% B)] (5.13)

where [, 8;] is the support of the random variable £(-) and p, defined as above.
(iv) = is a rectangle and the random variables are independent. Let F,:R-[0,1]
be the distribution function of the random variable & We have that

Bn B,
Q(x):J dFN(fN)"'J dFl(fl)Q(X,(fh---»fN))

oy

where = = XN [a, 8,1 With &, ..., £y fixed, for each ¢ €[a,, B;], it follows from
convexity that

B~

Qx, (&1, &, -, fw))<ﬁ Q(x (ay, &, ... En))

Bl 1Q(X(Bl,§2,--~,§N))-

Integrating on both sides with respect to dF,, and with £, = E{¢£,} we have

B,
J' dF(£)Q(x, (&, &, - - - ‘fN))< Q(X (@, &, ..., &N))

E

Bl @,

We can now repeat this process for &, considering the two functions
&H->Q(x, (ay, &, -, EN), LH-Q(x, (B, & - EN)-

One obtains

Q(X (By, &2 - -, EN))-

B, B8,
J' sz(‘fz)J‘ dFR(£)Q(x, (&, &, -, En))

ay

<[(By- a)(Br— o)) B~ E) (B~ E)Qx, (@), g, .-, En))
+(Bi—ENE-a)Qx, (@), Ba, - -+ En))
+(&—a)(B2- E)Q(x, (Br, @z, - - -, €n))
+(&—a - a)Q(x, (By, By, -, ENN)
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Doing this, in turn, for every &, . ..
type:

, én yields an upper bound for 2 of the following

z

=l -a 3 (116

i=1 yeG

Y:]Q(&(Yh---ﬁ)’N))) (5.14)

where || is absolute value, and G is the collection of 2V vectors defined by

G={y=(v,...,yW)|vi=a0rB,i=1,..., N}

One can also interpret (5.14) as follows: Let ext = = (¢ 1=1,...,L=2"}and now
define on ext = a probability measure v which assigns probability p, to ¢/, where

=1a —(J&—&E1/(B —a))).

Note that this probability measure, suggested first in [23], yields an upper bound
for 2 that does not require passing through a transformation assigning to each ¢ a
particular combination of the extreme points.

(v) Eis a polytope, possibly a rectangle. Let ¥ = {S* k = , v} be a simplicial
decomposition of =) i.e. the partition is generated by a complex whose cells are
simplices. Then in each cell we are in the situation described in (i). On each one
we have an upper bound of type (5.11) for

J _Qlx, &(w)) P(dw)
{€(w)eS}

which we can then add up to obtain a bound for 2. The bounds can be improved
by refining the partition, for example. Another way is to consider for each ¢ not
Just one possible representation, but look for the smallest upper bound given by a
number of possible simplicial decompositions. Again, let {¢ I=1,... L}=
ext Z < R™ and 2 the sets of all (N +1)-subsets of ext Z. Let (£) be the elements
of 2 such that ¢ belongs to their convex hull. Then

Qlx, &)= mm {Z p(§)Q(x, £")

(€', e'Nre2ie) Lj=0

Z p,(f)flzf} (5.15)

Integrating on both sides, after replacing £ by £(w), gives the desired upper bound
on 2(x), and thus also on z* as defined by (5.7). A last suggestion, in this general
case, is for Z a rectangle but the {£(-),j=1,..., N} not independent. We still
have that for all j, §— Q(x, &) is convex. Set j=1. Using (5.5), and with F the
distribution function of £(-) on =, we have that

52(X)=J Q(x, £)dF(¢)

= . max
{£=(&2.. En)Ee T}

B, - ~ A
J Qx, (61, &5 .- €N dF (£, £)
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=  max [(B_'__M) Q(x, (a,, é))
(€= (61 EnNEe =} Bi—a,
+(~——f‘(§)_“‘)o<x,<ﬁ,,é>)] (5.16)
Bi—a,

=

where g".(é) is the conditional expectation of £,(-) given :f and where Z is the
projection of = into R™ ™' through its first component. A bound of this type can
be computed for each j and then we should choose the smallest one to bound 2.

5.17. Application. Consider the stochastic program with recourse (1.15) with only
q stochastic. 1If we now assume that =, the support of the random variable £(-) = q(+),
is compact, all the bounds obtained for 2 when h and T are stochastic have their

counterparts in this case, except that this time we get lower bounds instead of upper
bounds.

5.18. Implementation. We are in the same situation as in Section 4. Given a partition
(simplicial decomposition, interval subdivision, or a rectangular cell splitting case
such as illustrated by Fig. 4.11) the question which arises is to find a refinement of
the partition that adds only a few cells and improves the approximation as much
as possible. In practice, this boils down, as in Implementation 4.10, to subdividing
just one cell. The piecewise linear character of £— Q(x, £) plays the predominant
role; as a matter of fact, all the arguments used to justify subdivision by a hyperplane
passing through y still apply. We would thus follow the same strategies as those
suggested in Implementations 4.7, 4.10 and 4.15. The situation is illustrated by
considering the simple recourse case (with h stochastic). Then h,— ¢ (x;, h;) is a
one-dimensional piecewise linear function. If [a, B,] is the support of h(-), we
have as a first bound
Bi— E. —a;

h,
W.(X;)Sm¢.(x., a,) +E,*_z¢/.()(., B).

Subdividing [a;, 8;] at £, we get
Vi(x) < vatiCxi a) + 3i(xs X0 + vadi(xs B))
where
Yo = (%~ E{hi(-) |hi(w) €[, XD/ (X = @),
s = (E{h,()|h(@) e [X. B = X/ (B = X)),
¥ = (E{hilla,, x)} ~ a)(B: = E{h|[%, BD/ (X, — @) (B =~ X.)-

This is a much tighter bound for general y, and equality holds if x; = xi. To illustrate
what is going on, compare the graph of the approximating function a, to ¢;(x: ")
before subdividing at ¥, and the graph of a, after subdivision (see Fig. 5.19).
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Fig. 5.19. Splitting [a,, 8,] at x..

5.20. Convergence. The same argument as that used to obtain Convergenc 4.6 in
Section 4, again relying on Theorem 2.8, applies to this case. Except here, we start
with = compact and for all /, ¢' is the extreme point of the cell §' at which £—Q(x, £)
attains its maximum or minimum, depending on Q(x, -) being convex or concave.

6. Extremal probability measures

The use of extremal measures to construct upper and lower bounds is intimately
related to a number of questions usually raised in the context of stochastic optimiz-
ation with partial or incomplete information. In order to find a bound for

Ef(X)=Jf(X, é(w))P(dw)

we intend to replace P by another probability measure, say P,, that automaticallly
guarantees

Ef(X)BJf(X, fw))P(dw) = Ef(x), (6.1)

or its converse. One way to do this is to find a measure P, in a certain class % of

probability measures on ({2, &), which contains P, and that maximizes (or minimizes)

the linear functional P'-—»]f(x, £(w))P'(dw) on the set 2. Since by assumption
Pe P, we have

int Jf(x, £(w))P'(dw) < E(x) < sup Jf(x, Ew))P'(dw). (6.2)
Pe®

Note that the measures that minimize or maximize the preceding expressions in
general depend on x, but not always. And if they do, quite often the same measure
remains extremal for a relatively large neighborhood of x.

To exploit (6.2) in the search of upper and lower bounds for stochastic program-
ming problems, the choice of 2 is of utmost importance. On one hand we want ?
to be ‘narrow’ enough to give us a measure in the immediate neighborhood of P;
on the other hand, the chosen measure P, should be such that finding E{(x) is
easy. In the context of the applications we have in mind, this means that P, should
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be a discrete measure. One possibility is to define 2 as a neighborhood of P such
as

P ={prob. meas. Q|sup |P(A)— Q(A)| <&}, (6.3)
Ac o

or even

P= {prob. meas Q|sup I G(w)P(dw)—J G(w)Q(dw)\ < e} , (6.4)
6O

where © is a class of test functions. Or with F the distribution function of £(-)
defined on R"™

P = {dist. funct. G|sup |F(z)— G(z)| < }. 6.5)

The class P can be further restricted by limiting the acceptable class of measures
to those having finite molecular support, etc.

The construction of bounds through extremal measures will however follow a
quite different course; ? will be defined by a finite number of equalities and
inequalities which lead automatically to extremal measures with finite support. For
a number of reasons that will become apparent later on, it is easier to work here
with = = R" as the support of the measure P (technically, £(-) is then the identity

map and 2 =Z). So let ? be the set of probability measures Q on (=, AN) that
satisfy

j_ v(6)QMds) <@, i=1,...,s5, (6.6)

I (8)Qd =a, i=s+1,..., M, (6.7)

where M is finite and the v, are bounded continuous functions. We shall always
assume that Pe @, i.e. satisfies the relations (6.6) and (6.7). The probiem of finding
a measure that satisfies these conditions and maximizes or minimizes

J_ %(£)Q(dg) (6.8)

where vo(£) =f(x, £), can be viewed as a generalized moment problem [28). For
problems of this type, we have the following general result:

6.9. Theorem. Suppose = is compact. Then the set P is convex and compact (with
respect to the weak* topology), and P = cl co(ext P). Assuming that v, is continuous
relative to =, then Qr—»] vo(£)Q(d€) attains its optimum (maximum or minimum) at
an extreme point of P. Moreover the extremal measures of P are precisely those having
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finite (molecular)} support {£', ..., &%} with L< M +1 such that the veciors
vi(£") P,@

UMi‘fl) T |\UM{§L)
1 1

are linearly independent.

Except for the presence of inequalities in the definition of @, this result can be
found in [26, Theorem 2.1]. Kemperman [27] shows that the supremum can be
obtained if v, is upper semicontinuous, the v, 1=<i=<s, are lower semicontinuous
and the v, s + 1< i< m, are continuous (with all functions appropriately dominated).
We choose more restrictive assumptions since we work with both maxima and
minima. Dupacova’s minimax approach to stochastic programming [48] led to the
investigation of extremal measures. She obtained results of this type {12, 13] for
related moment problems. The proof we give here, based on generalized linear
programming [10, Chapter 24], is due to Ermoliev, Gaivoronsky and Nedeva [15].
1t is reproduced here because it is constructive and used in the sequel.

Proof. Suppose the constraints (6.6), (6.7), and
J Q(dg) =1

are consistent, otherwise there is nothing to prove. The convexity of 2 is easy to
verify, the compactness for the space of measures on a compact metric space follows
from Prohorov’s Theorem, and 2 = cl co(ext 2) from the Krein-Milman Theorem
about the representation of the elements of a convex set as convex combinations
of its extremal points.

Now suppose that {£',..., ¢} is a finite collection of points of = that we view
as part of the potential support of the extremal measure that maximizes (6.8); the
case of minimization of (6.8) involves the same arguments and does not need to be
dealt with separately. The question now is to assign to these points {¢',...,¢"} a
probability distribution that maximizes (6.8). This can be expressed as a linear

programming problem, with variables {p,, ..., p,}, formulated as follows:

find p,=0,...,p. =0

such that
=1,
=1

Y o(pm=a, fori=1,...,s,
=1
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i v(EYp=a; fori=s+1,..., M,and
=1

z= ‘Z vo(fl)p, is maximized. (6.10)
=1
Assuming the points {£',..., £"} have been picked so as to make -lhis probl'em
feasible, it is then also solvable. Let {p;,I=1,..., r} denote the optimal solution
and let
(8%, 7y, T, Ty ) = (67, 77)

be the simplex multipliers associated at the optimum to the constraints of (6.10).
The measure determined by

QLN =pi, 1=1,...,»,

is the desired extremal measure, unless some £ in = can be found such that
M
vo(é) = ¥ 7 v(£)—6">0. (6.11)
i=1i

This follows directly from the optimality criteria for linear programs, when we note

that each ¢ in Z potentially generates a column that could be added to (6.10). If
(6.11) holds for some &, let

§”'€argmaX[vo(§)*§ mvlé) ) €e 5] (6.12)

The existence of £*”' is not in question since the v; are continuous and = is compact.
Adding the column

1
v (£°7)

UM(‘le)
U0(§v+l)

to linear program (6.10) is guaranteed to yield a new solution {p;/™',I1=1,...,v+1}
and a measure

Quule=pi™", I=1,...,v+1,

such that

J vo(£)Q.(d§) < J 0o(£) Q.1 (d).

Repeating this until the point ¢ generated by (6.12) fails to satisfy (6.11) yields.thc
extremal measure that maximizes (6.8). Since this is generalized linear programming,
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the convergence proof of Dantzig [10, Chapter 24] applies; a variant appears in
{43, Chapter 11.B] which can be exploited to obtain convergence of a modified
procedure that only requires verification of (6.11) upto ¢ [15, Theorem 5], a most
desirable feature in practice.

To complete the proof of the theorem, it suffices to observe that the optimal basis,
associated with the solution of (6.10) will involve at most M +1 columns of the
type [1. nl(é), .., op (6917 that are linearly independent. And this holds for every

possible objective ]vo(f)Q(df), which by varying v, ylelds all extreme points
of 2. U

Theorem 6.9 can now be applied to a variety of cases. The simplest one is
Z=[a, BI<R', and the only condition is that the expectation with respect to P,
should match the expectation £ with respect to P. The problem reads:

find Q a measure on (=, B

8 )
such that QzO,J Q(d§):l,J £Q(dé)=¢

8
and '[ vo(£) Q(d¢) is maximized.

Using the mechanism of the algorithm for generating P,, in particular (6.12), it is
not difficult to see that

with v, concave, P,{£}=1, (6.13)

with vy convex, P,{a}= B—g, PB}= §—a. (6.14)
B-a B-a

This result and extensions thereof involving conditional expectation conditions,
variance and unimodality conditions have been obtained and then applied to
stochastic programming problems by Dupagovi (12, 13, 14] and Cipra [9]. Observe
that the extremal measure defined by (6.14) is precisely the discrete measure with

i . . : L —. .
Support on extreme points obtained in Application 5.6 when = is an interval (Case

(ii)) and £ vy(¢) = Q(x, £) is convex. In fact, many of the results obtained in
Sections 4 and 5 can be recovered by a judicious application of Theorem 6.9, most
often by relying on the further characterization of the support of the extremal
Mmeasure given by the next theorem.

6.15. Theorem. Suppose = c RN is compact,

g’={0 L fQ(df)=f=J= §P(d§)},
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and vy: = >R is convex. Then there exists

P, € argmax J_ vo(£)Q(d¢)

Qe

with finite (molecular) support {£', ... £} with L< N+1 and

{¢',.. ., cext{co E)c

Proof. From Theorem 6.9 we already know that P, can be chosen with finite support
in =. Suppose
£eZ\ext(co Z) and P{¢)=p>0.

Then there exist {£Yeext(co X),j=1,... ,J} and nonnegative scalars {A,j=
1,...,J} such that

7
£=1 a8,
ji=1
By convexity of v,
! ! 1j
Pio(&)= Y PAuo(£7).
Jj=1

Thus replacing P, which assigns probability p, to ¢' with P, which assigns probability
0to ¢ and for j=1,...,J, probability pA; to £¥ we have

Ivo(f)Py(df) SJ v(£) P(d€)

but still
f EPL(dE) = J' ¢P(d6)=E
The argument shows that the search for an extremal measure can, in this case, be

restricted to those having their support included in ext(co = ). But this is a compact
subset of R™. We complete the proof by applying Theorem 6.9 with

#? ={Q prob. meas. on ext(co E)’J £y =¢. O

6.16. Corollary [31; 17, Theorem 1]. Suppose K is polytope that includes =, P =
{Qlf < £Q(d¢) = &} and vy: K >R is convex. Then

L _ L
Yad=¢6% ,\,=1] 6.17)

j=1 J

L
J vo(§) P(d§) < max [g /\,vo(e’).

where {e',... e'}=ext K

|
I
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proof. Of course

sup J vo(£)Q(dE) < sup J vo(£)Q(¢)
Qe P

Qe Py

where 24 = {Q prob. meason K |{, £Q(d&) = £} > P. We then apply Theorem 6.15
with = replaced by K and # by ?,. ]

Reformulating this in terms of f and E, this becomes:

6.18. Proposition. Suppose £— f(x, £) is convex. Then

L L L
E_f(x)Smax[z Ah(e) Y rel=¢ 3 AJ:I]
PEN j=1 =)

(6.19)
e
where {e', ... e} is a (finite) collection of points in R™ such that co(e', ..., e")> =
and h:co(e', ..., e") >R is a convex function such that
h=f(x,-) onZ.

In general, however, i.e. when other constraints than first moment conditions are
part of the definition of 2 or the function v, is not convex or concave, what limits
the use of Theorem 6.9 in practice is solving (6.12)! In general, the function’

& vp(€) - ; ] v,(£) (6.20)

is neither convex nor concave, if some v, is nonlinear, since the 7} are not restricted
in sign. The remainder of this section is concerned with how to handle this global

optimization problem in the context of stochastic programs with recourse. We begin
with the simplest case.

6.21. Application. Consider the stochastic program with simple recourse with random
tight-hand sides h, i.e. of the form (1.15) with ¢(y, £) defined through (3.21) and
(3.22). The problem is then separable and the function v, can be expressed as

vo(£) = "Z‘z

i=1

5(6)= T U(x, )

and consequently is also separable. Since only marginal density information would
be required in evaluating (6.8), the only sensible (generalized moment) conditions
of type (6.6) or (6.7) would involve no more than one component of £ at a time.
Thus finding the maximum (or the minimum) of vo—}:,'\:l wiv; is reduced to N
(=m,) one-dimensional maximization problems that can be handled in practice
in a number of ways, see also [8].
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6.22. Implementation. We have to solve

M

find £€la, B) such that z=vg;(¢)— ¥ #!v,(£) is maximized. (6.23)
i=1

We consider the case when M =2, v; (&) =& vy (€)= £: we want to match the firs

two moments. The function ¢(¢) = vo;(£) is convex (1.11). Reformulating (6.23) we
have:

find £€la,B] suchthat ¢(£)—wre—mie? is maximized. (6.24)

If 77 =<0, the objective function is convex, in which case we only need to examine
its values at the boundary points of the interval. If 73 > 0, the interval can be divided
up into regions of convexity and concavity and on each one the maximum can be
found by conventional methods. Another possibility when higher moments are
involved, is to use the bounds on the expected value of a convex function, obtained
by Don [11], for a class of sample-based probability measures. The optimal points
of density ¢', ..., ¢ and the associated probabilities p,, ..., p, are then straightfor-
ward to calculate provided the measure P has certain symmetries. When this last
condition is not satisfied, we could still use the so-generated discrete measure to
initialize an algorithmic procedure for solving (6.23).

6.25. Application. Consider the stochastic program with recourse (1.15) with random
right-hand sides h. Suppose
F={E,i=1,... M)}

is a partition of Z, for every i=1,..., M, v, is the indicator function of =, and
a; = E{h(-)| E;} is the conditional expectation of A(-) given =, Fori=1,... M, let

p.=P(Z)=Plh()eE]

and again let vy(£) = ¥ (y, £). The problem of maximizing v, subject to (6.7) is then
decomposable, in that each subregion =, can be dealt with separately. Indeed,

M
J vo(§)P(d€) = .

L vo(£) P(dE)

and thus the original problem decomposes into M subproblems of the type

find a probability measure Q; on E,

such that J £Q:(d¢) = a;

and J_ vo(£)Q,(d¢) is maximized (or minimized). (6.26)

Al
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with P, the optimal solution to (6.26), the desired measure is given by

M
P'=Y pPl.
i=1
Solving (6.26) is in principle not any easier than solving the general problem, except
that we are only dealing with linear functions v, (which means that the convexity
of vy yields the convexity of the objective function of the subproblem (6.20)) and
if the partition ¥ of Z is left to us, we can choose it so that it corresponds to linear
pieces of £— ¥(y, £).

6.27. Application. Consider the stochastic program with recourse (1.15) withrandom
right-hand sides h, with the h,(-) independent random variables for i = 1,...,my;
we also have that vy(&) = ¥ (y, £). With the independence of the random variables
comes the separability of the constraints (6.6) and (6.7). We would thus have a
relatively easy problem to solve if it were not for the intricate relationship between

the & = h, that appears in the objective v,.

6.28. Implementation. If we are interested in the probability measure that minimizes

juo(.f)Q(dg) we can rely on the approximation to ¥ provided by Application 3.3.
We have that

vo(€) = max n'(£-y)

Isi<i
where x = Tx and, as in Application 3.3,
n'eargmax[n(£' - x)[aW = q]

for {¢'=h'1=1,.. ., L} a finite number of realizations of h{- ). Minimizing the
function (6.20) that appears in the subproblem can then be expressed as

find 0cR, and (£ =, i=1,...,m,)

suchthat 8= n(¢-x), I=1,...

M
and 6~ 3 m/v(£) is minimized.

1=1
If, for example, the functions o, correspond to first- and second-order moments,

then this is a quadratic program, not necessarily convex. To solve it, we can rely
oOn existing subroutines [16].

6.29. Implementation. If in Application 6.27 we are interested in the probability
measure that maximizes | ¥(y, £)Q(d¢), we rely instead on the approximation to
¥ (-, x) which comes from Application 3.23, which gives a separable function Uo,
aCtually of the same type as for stochastic programs with simple recourse. This
brings us to the case already studied in Application 6.21 and Implementation 6.22.
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We note that the use of the approximating functions for the recourse functiop
makes the calculation of extremal measures a reasonable undertaking. OtherwiSe,
the global optimization problem of finding the £ € = that maximizes (or minimizes)
the function ve( - ) — Zz , mLv:(-) would be too involved to solve exactly as a subprob.
lem in obtaining error bounds. Finally, we observe that all the results derived here
could be extended to h, T and g stochastic: each case, however, requires a separate
analysis to take full advantage of the properties of the problem under consideration,
As more information is gathered about these types of approximation and resulting
bounds, we expect to see a more detailed analysis of each case. The use of these
techniques in an overall scheme for solving stochastic programs with recourse alsq
needs further study, here we have limited ourselves to finding extremal measures
that yield the best possible lower and upper bounds for a given x or x. Changing
x only affects the function v, and this may affect the extreme points (see [12] and
[13]). Often, however, all that may be needed when passing from x to another is a
recalculation of the weight factors p,,...,p, in (6.10) the points {&',...,e0
remaining unchanged. Moreover at each new x, it may not be necessary to solve
the generalized moment problem to optimality.

6.30. Convergence. To obtain convergence, we need to consider sequences of gen-
eralized moment problems with an increasing number of restrictions on the moments
of £(-). This must be done such that a sequence of extremal measures {P,,v=1,...}
is obtained that converges in distribution to P. We may, for example, fit additional
conditional mean information as in Section 4. We can then apply Theorem 2.8.

7. Majorizing probability measures

The role that convexity played in obtaining many of the bounds in the previous
sections is taken over here by order preserving properties. The approximations are
based on stochastic ordering [32, Chapter 17]. They are especially useful because of
their simple calculability. The use of majorizing measures to approximate stochastic
programs was first advocated in [46].

We denote by < the partial ordering induced by the closed convex pointed cone
C on R"™. We write
=2 if P—'eCceRY

and say that ' precedes 1> (with respect to <c). A random vector £:0-r"
stochastically precedes the random vector £7: 2 >R"™ (with respect to <o) if

Plo|t(w)Scf(w)}=1;

we write £'(-)=<c£%(). A function ¢ from R” into Ru {+co} is order preserving
with respect to <c if

<o’

oY= ().

implies
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For ¢ order preserving and £'(-)=<c&(), obviously
E{¢(£' (o)} = E{e(&(w))}.
From this follows directly
72. Proposition. Suppose £— f(x, £} is order preserving with respect 10 <c and for

i=1,2, £0):(92, A, P)>(R™, B" F,) are two random veciors such that &)
stochastically precedes £°(-). Then

E’f(x)=J’f(x, £'(w))P(dw) < Jf(x, £(w))P(dw) = E{(x). (7.3)

74. Application. Consider the stochastic program with recourse (1.15) with only
h(-), the right-hand sides, stochastic. Let

pos W={l t=zz W’y,,_v,zo},

J=1
the convex cone generated by the columns of W, see (1.17). Let {t"eR™, I=1,..., L}
be a frame for this polyhedral cone, i.e. the vectors 1" are positively linearly

independent and pos(t',1=1,...,L)=pos W. Suppose that forall I=1,..., L, and
£e =, the function

Aoy, é+ A1) R R

is monotone increasing and that pos W is pointed. Then, if £ ) S pesw E()

‘I’L(X)1=J ¥(x, £Hw))P(dw) < ¥(x) (1.5)

and, if £(°)= posw &V (7)

W(X)SWU(X)izj #(x, £ (@) P(dw). (7.6)
This all follows directly from Proposition 7.2. It suffices to verify that the conditions
imply that £ ¢(x, £) is order preserving with respect to = o5 w, details are worked
out in [46, Proposition 3.2].

Below, in Application 7.8, we give an example where the monotonicity of ¢ in
each direction 1' can be verified directly. In other cases, one may have to rely on
various properties of the problem at hand. The construction of the random variables
&) and £Y(-) relies on subdividing the range of £(-) into subsets generated by
the partial ordering =< ., w. This is done in [46, Section 3]. Convergence can be
obtained by relying on finer and finer subdivisions of = and by relying on a special
form of Theorem 2.8. We shall concentrate instead on questions of implementability
and special cases.
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7.7. Application. Consider the stochastic program with recourse (1.15) with only
q(-) stochastic. Let

D(W)={yly = 7#W for some w € R™}

and let {u’,1=1,..., L} be a frame for the convex polyhedral cone D(W). Suppose
that for all I=1,..., L and é€ =, the function

Aoy, £+au')RY SR
is monotone increasing, and

EYCIZom EC) Zpown £V ().
Then

vh(x)= J W(x, £(w)) P(dw)=< ¥(x) (1.8)

and

W(x)sw“(x):J ¥(x, £V (@) P(dw). (1.9
To apply Proposition 7.2, we need to show that the monotonicity of A — r(x, £+ Au')
for I=1,..., L implies that £~ yi(x, £) is order preserving. Suppose ¢'=pw, &%
then ¢ — ¢'e D(W) which means that

L
E=4 Y au'
=1

for some scalars a, = 0. Relying on the monotonicity of ¢ in each coordinate, we
obtain:

ix, €V <svx ' +oul )< gy, £ +au'+ o)< < gy, €).

Note that & and g stochastic can be handied simultaneously provided naturally
that the conditions laid out in Applications 7.4 and 7.7 be satisfied: this suggests
some of the advantages of this approach. The real utility of this approach is, however,
in the separable case.

7.8. Application. Consider a stochastic program with simple recourse with random
right-hand sides h, i.e. of the form (1.15) with ¢(x, £) separable as defined by (3.21)
and (3.22). Suppose that for i =1,...,m,, g, =0 and ¢, =0, and define £5(+) and
£7(+) as follows:
Er(y= &)
EC)=EC)

on{w|&(w)=x},
otherwise
and
ECC)=EC)
EC = E()

on{w|&(w)= xl,

otherwise.

{
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Then
v =3 J Bxe £5(w)) P(dw) < ¥ (x)

and

Yix)svYx) =Y J ¥i(xi £7(w)) P(dw).

i=1

To see this, observe that the functions

& Uixn &)
are monotone decreasing on (—, x;], and monotone increasing on [y, +) since
il =y,
if &=y,

q (xi— &)

hilx, &)= {q.*(g. ~x)

Therefore, —;( x;, - ) is order preserving with respect to <g_ when ¢, < x, and ¥.(x,, )
is order preserving with respect to <p when & = x,. We apply Proposition 7.2 to
obtain

-J Uilx £0)) Pldw) < *J i £4(0)) P(dw)

-0

and
J il X, £H{w)) P(dw) < J ¥ (xi, (@) P(dw).

Adding up these two inequalities and then summing with respect to i yields the
assertion involving £"( - ). The symmetric inequality with £( -} is obtained similarly.

7.9. Implementation. The search for random variables £/(-) and £\'(-) that yield
the desired inequalities, can be carried out in terms of the distribution functions
Fand FY induced by these random variables. Let F, be the distribution function

of £(-) with support [a,, 8] The conditions become

Fr<F<FY on(-ox,yx]l

FrzF=F on[x,x).

Figure 7.10 gives an example of a discrete distribution FY that could be used to
approximate F. As usual, we are only interested in discrete approximations. Our
goal is thus to find best discrete approximates that are below or above F. Since
Ft=F = FY at x, we can find the best approximating distribution function that is
below (or above) F, on each segment (-, x,] and [, +o0) separately. And since
below or above is just a question of reversing signs, we may as well consider the
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Fig. 7.10. Majorizing distribution function FY.

problem at hand in the following framework:
find a distribution function F:R -[0,1]

such that F< F, Fis piecewise constant with at most L jumps

and j |[F(s)— F(s)|ds is minimized. (7.11)

We have defined best approximation in terms of the /,-norm. Recalling that F< F
we have

JlF(S)—

and thus we may as well simply maximize | F(s) ds subject to F<F1fz,.. .,z
are the points of dlsconlmulty of F, it is easy to verify that F cannot be opumal
unless at those points F(z,) =F(z), I=1,..., L Taking these observations into
account, Problem (7.11) becomes

)| ds =j F(s) dsfj F(s)ds

find a=zy<2z,<2,< sz<€z,,=8

L
such that p(z Z Zie1— Z)(F(z)) — F(z_,)) is maximized, (7.12)

where [a, B8] is the support of the distribution function F. Note that p is not convex.
Even with L =1, when (7.12) reads

find zelq, B]

such that p(z)=(8-z)(F(z)—- F(a)) is maximized, (7.13)

the solution is not necessarily unique, in fact the solution set may be a disconnected
set of points. Assuming that F is twice differentiable with F’ denoting the correspond-
ing density, we have that z* is optimal if

E(z*)- F(a)
F'(z%)

F'(z*)
Fr(z*)

=B-z*=2 (7.14)
which in general has a multiplicity of solutions. To solve (7.12) we propose a

heuristic that sequentially adjusts the jump points z,, ..., z,.
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Step 0. Pick L points (for example with equal quantiles) in (a, 8). Set [ =0.
Step 1. Set I =1+1. Readjust z using the formula:

z7€ argmax (z.,,—z)F(z)—-

Tel=Toze]

F(Zlnq))-

Solve using (7.14) exploring the local optima. Restart Step 1 if 1< L; otherwise, go
to Step 2.

Step 2. Slop if forall {=1,.
,Land I= 0

, L, 1z = zj| < &. Otherwise, return to Step 1 with
g=2z; for =

This algorithm converges (a monotone increasing sequence bounded above by
jF(s) ds) but not necessarily to the optimal solution, this depends on the initial
choice of z,,..., z;.

An alternative approach to finding the best approximating discrete distribution
function 1s to enter the points z,, ..., z; with associated weights. These may corre-
spond to the values of the recourse function, for example. With v(-) as the weighting
function, Problem (7.12) becomes

find a=zy=z,<-- - sz, =

21 =8
L
such that p(z)= Y (v(z.,)—v(z))[F(z)) - F(z.,)) is maximized.
=1
(7.15)
In the case L =1, we have a formula for the optimal z* that corresponds to (7.14),
and for the general case the same algorithm, with the obvious modifications, can

be used as a heuristic. We could also use generalized programming, as in Section
6, to solve Problem (7.12) or (7.15). The problem corresponding to (7.25) is then

find p;=0,j=1,...,v

J
such that ) p,<F(z),j=1,...,v and Z

z;)p; is maximized
i=1 j=1

(7.16)

where p; = ﬁ(z,)—f?(z,v,). For v(z)=0, which is usually the case, the optimal
solution is p; = F(z;) — F(z;,_,). The optimal dual variables associated to (7.16) are
defined by

0,=v(z Z ay.
t=j+1

To add a new point z,,, that generates a new column of (7.16), we need to solve:

max[ max {v(z)— Y o,}].
IETE S R CARE S| t=j+1

This approach however does not lend itself easily to a fixed upper bound on the

number of discontinuities of F. It could be used to initialize the procedure suggested
earlier.

(7.17)
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7.18. Implementation. When ¥ is not separable, we can still proceed as in
Implementation 7.9, if we first replace the recourse function by its simple recourse
approximate, cf. Application 3.18, at least when seeking an upper bound for ¥(x).

8. Further bounds involving E, or 2

In this concluding section, we just want to record a number of bounds that require
the evaluation of the objective functional E, at some points. The use of these results
is thus limited by our capability of evaluating E; (or its gradient) with sufficient
accuracy.

To begin, let us simply observe that for all xeRY

inf E; < E((x), (8.1)
which gives us a readily available upper bound. Using the subgradient inequality
for convex functions we have:

8.2. Proposition. Suppose x+—>f(x, £):R" >R u{+0} is a convex function. Then for
any pair x, X in R,

E{x)—E/(x)= 0" (x—X) (8.3)

with 5 aE,(%), provided the set E;(X) of subgradients of E; at X is nonempty.

Proof. Simply observe that f(-, £) convex implies that E, is convex which then
implies (8.3). U

8.4. Application. Consider the stochastic program with recourse (1.6) with only
h(-) stochastic. Then from [41, Corollary 7.16], we know that with h = ¢&:
—E{m(x, £)}Tes2(x),
where m(x, -): {2 >R™ is a measurable function such that
m(x, £) € argmax{mw(§— Tx)| mW=gq}.
Thus, with f as defined by (1.9), we obtain
2(%)=2(x) + E{m(x, {(@)}T(x—X). (8.5)
8.5. Implementation. Except for some special cases such as stochastic programs
with simple recourse, evaluating 2(x) or E{m(x, £)} is not feasible, but suppose

that 25 < 2 where 25 has been obtained by relying on an approximating measure
P,. Then for any x we have that

Q(X‘)BQL(XA)BQL(X)'FJ m(x, &w))T(x-X)P (dw),
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with PZL(X)=IQ(X,§)PL(d§). The term on the right can.now be calculated and
gives us a lower bound.

8.6. Application. Consider the stochastic program with recourse (1.15) with q(-)
and h(-) stochastic. As usual
¥ (x) = E{y(x, &w))},
but let us now also define p as follows:
p(x)=inflcx|Ax = b, T=x, x 20].
The stochastic program can then be formulated:
find yeR™ such that p(x)+ ¥(x) is minimized. (8.7)

Suppose x is a point at which both p and ¥ are finite, and suppose D¢ dp(x); the

convexity of p follows from standard results in parametric linear programming. Let
y be such that

—-veav(x).

Assume such a point exists. For any y e R™, it follows from the subgradient inequality
for convex functions, in particular (8.3), that

px)—p(x})=6(x~x) and ¥(x)-¥(x)=-dx—x).

Adding up these two inequalities, we obtain that for all y,
p(X)+¥(x)zp(X)+d(x) - 8(X - Xx)

and hence
inf(p+¥)=p(x)+¥(x)—0(x — x)- (8.8)

We have thus a lower bound for the infimum of the stochastic program.

We note that inequality (8.8) also follows from a duality argument. Assuming
that all operations are well-defined:

inf(p+¥)=~(p+ ¥)*(0)= - (p*T¥*)0)
= —inf(p*(v)+ ¥*(~ 1))

=z —p*(v)— ¥*(-v) forall v,

where * denotes conjugacy and [ inf-convolution. Inequality (8.8) now follows
from the preceding one with v = and observing that:

pH(D)=0x—p(x),  WH(-0)=-dx— ¥(X).
This also shows that inequality (8.8) is sharp since

inf(p + ¥) = sup[-p*(v) - ¥*(-v)].
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8.9. Implementation. Let us illustrate the use of this inequality in the.case of 3
stochastic program with simple recourse with stochastic right-hand sides h(.),
Suppose x° is, for possibly heuristic reasons, believed to be a good guess at the
optimal tender (certainty equivalent). Let us now solve the linear program
find xeR7, u" eR>, u eR:
such that Ax =b,
Tx+ u'— u =x°

ex+q'u +q u =z isminimized (8.10)

where g*, g~ are as usual the recourse costs. Let (X, 4", ii7) be the optimal solution,
and (&, 7) the associated simplex multipliers. Then

#edp(X)
with ¥ = T% and p as defined in Application 8.6. Moreover, 7€[—¢q", q*] as follows
from the optimality conditions, and thus there exists x such that

—TEIVI(X)
as follows from the formula for subgradients of the recourse function in the simple

recourse case [21, Chapter IIl, Section 4). If for i=1,..., my, F; denotes the
distribution function of the random variable h,(-),

=97 —qF.(%)

where g, = g7 + q, . With z° the optimal value of the stochastic program (1.15) we have
P+ V(X)) -F(X-X)

Let 7 = cX + W(¥) which with the above yields

0= 7-2"< W(§)- V(¥ + A -X) (8.11)

In the case at hand, this becomes [33, Chapter 1I1, Section 4]}

X

-k dFQ),

0=i-2'= Y q J

=1 ¥
which is known as Williams™ inequality. Let us point out that the pa}h followe(: tof
obtain this last inequality, using (8.8) is quite different from the original proof o

Williams [47] and should clarify the underpinnings of this result.
9. Preliminary computational report
The objective functional and probability measure approximations presented above

are intended to be used together in solution procedures for stochastic progre_lrrllls-
The characteristics of each objective functional approximation make it especially

1
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amenable for use with certain probability measure approximations. We consider
here the case of stochastic programs with recourse and discuss the merits of various

objective functional-probability measure approximation pairs. The pairs which
appear 10 be the most promising are marked by lines in Fig. 9.1.

Objective Probability
Functional Measures
Original » Original
. e - Conditional

Subgradients <\ L E xpectations
,//’\ g Extreme
Roys <wo ,>‘§-<)</— Points
< /)/;: \\>\\ Extremal
Pairs “&~ \\ "= Probability
~< Measures
L
~~. Majorizing
Probability
Measures

Fig. 9.1. Approximation pairs.

The original objective functional refers to the evaluation of Q(x, élw)) asin (1.7).
Since the integral in (1.7) may be extremely difficult to evaluate, the original
probability measure must often be approximated. The simplest and most straightfor-
ward approximations that only require convex objective functionals are probably
the conditional expectations and extreme point approximations. These approxima-
tions are linked to the original objective functional in Fig. 9.1 because of their
simplicity and generality of application.

The subgradient objective approximation allows the original probability measure
to be used when each region in the support = is assigned a specific subgradient.
In this case, the difficult integration in (1.7) is reduced to evaluating the probability
of and the conditional expectation over each subgradient’s region, where these
regions can be chosen to be appropriately easy to evaluate. Subgradients are also
well-suited to the extremal probability measure approximations because they can
make the solution of (6.12) easier. If = is partitioned into regions of concavity or
convexity ofif‘; m, (&), then the maximum can be found by checking optimality
conditions for each of the subgradients without explicitly considering v4(£) in the
solution.

The use of the ray function approximation is useful in similar circumstances to
the subgradient approximation. In using the original probability measure, the simple
fecourse approximation 3.23 can be used in conjunction with an algorithm such as
in Wets [42] to solve (1.6) using the ray approximation of Q(x, &(w)). The ray
function approximation is also well-suited to the extremal probability measure
approximation because the simple recourse formulation can be used to make the
problem separable so that we are in the setting of Application 6.16. A further
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advantage of this simple recourse formulation is that it can be used to achieve the
conditions for the use of majorizing probability measures as in Application 7.8,

The pairs function approximation is basically a method for reducing the computa.
tional burden of a large deterministic equivalent program to (1.6). If the originaj
distribution is finite, but perhaps too large for the deterministic equivalent to be
easily solvable, then the pairs approximation may be used to obtain a bound by
solving a number of small, closely-related programs. For continuous distributions,
the pairs problem may also be used as a bounding technique. 1t may consider 3
large number of regions with conditional expectation or extreme point bounds and
again obtain results through the solution of a series of small programs.

Computational studies in each of these areas are planned but only limited
experience is currently available. Hausch and Ziemba [18], for example. have
reported on the use of the original objective functional with conditional expectations
and extremal support approximations. They found that these approximations pro-
vided good bounds for some simple production examples. They also noted that the
improvement in the accuracy of the bounds is not necessarily strictly monotonic in
the number of regions used in the approximation. Kall [24] has reported similar
results in using these approximations as part of a solution procedure for (1.6). His
initial experiments have shown that optimal solutions to (1.6) can often be obtained
with very few regions used in the evaluation of the approximations. In some cases,
however, the procedure of refining the partition in the region of greatest probability
did not produce any improvement in the bounds and many iterations were required.

We have also observed this behavior in our initial investigations of the conditional
expectation and extremal support applications. No improvements occur when refine-
ments are made in regions of linearity of the recourse function. This led us to
proposing the refinement procedure in 4.10 which produces monotonic improvement
in the approximations. Our initial experiments have also shown that few refinements
are necessary in many examples. This occurs because the recourse function is often
‘flat’, having little variation across the different regions in the partition of =. In
some examples, the recourse function, however, has more variation and more
iterations are required.

We have begun limited experiments with the use of extremal probability measures
and second moment conditions on the probability measures. Our initial results
indicate that the master problem (6.10) and the subproblem (6.19) for simple recourse
problems can be solved quickly with convergence established within five or six
subproblem solutions. The resulting bounds provide a more precise interval around
the simple recourse function than do a single expectation and extremal support
bound. The utility of this bound as part of a solution procedure is still to be evaluated.

The emphasis in this paper has been on two-stage stochastic programs with
recourse. The general functional form in (1.2), however, can also be applied to
multistage stochastic linear programs. These problems have a wide variety of
applications, including financial planning (Kallberg, White and Ziemba [25], Kusy
and Ziemba [29]) and energy modeling (Louveaux and Smeers{30]). Their theoretical
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proper[ies are closely linked to those of two-stage programs and have been investi-
gated, for example, by Olsen {33, 34] and Rockafellar and Wets [36, 38, 39]. Some
initial results on approximation in multi-stage stochastic programs appear in Birge
[5]. The application of the methods presented here in the multistage context should
provide 2 foundation for the analysis and solution of these widely applicable models.
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There are many types of multi-time-period stochastic programming problems. In particular,
there are problems where activities in one time period provide inventories or new capacities of
uncertain magnitude for use in the next time period. One approach is then to ignore the uncentainties
and soive a deterministic model using mean values. A slightly more sophisticated approach is to
make first-order corrections to allow for the uncertainty. This paper suggests a strategy for
computing such corrections. The problem of implementing this strategy is then studied by
considering some very simple examples. These examples suggest thatit may he seriously misleading
10 assume that all the relevant random variables are normally distributed uniess the variance is
small compared with the mean. This is because in reality the random variables are nonnegative
Fortunately the approach also works il the variables are assumed to have Gamma distributions.

Kev words: Multi-Time Periods, Stochastic Programming, Exploration Activities, Approximate
Solutions, Gamma Distributions.

1. Introduction

The task of finding an effective general method for solving multi-time-period
stochastic linear programming problems has remained an elusive one since the
problem was first posed, see Dantzig (1955). If the random variables have a discrete
joint distribution, then the problem of choosing values for the first-ime-period
decision variables to optimize the expected value of the objective function reduces
in principle to one of solving a large linear-programming problem. But the size of
this problem becomes unmanageable except in very special cases. Beale et al. (1930)
proposed a method for finding an approximate solution to problems with random
right-hand sides representing uncertain sales demands, and this work has been
extended by Ashford (1982). But other problem structures require other approaches.
In some problems there are activities that provide either inventories or capacities
for use in the next time period, where the extent of the new resource is a nonnegative
random variable. The mathematical structure of the problem is then as foliows:
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