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Multistage stochastic linear programs model problems in financial planning,
dynamic traffic assignment, economic policy analysis, and many other applica-
tions. Equivalent representations of such problems as deterministic linear pro-
grams are, however, excessively large. This paper develops decomposition and
partitioning methods for solving these problems and reports on computational
results on a set of practical test problems.

ANY practical problems require that decisions be made periodically

over time. These problems can often be formulated as multistage

linear programs. The resulting programs sometimes have a staircase

structure that can be exploited by decomposition (Glassey 1971, 1973;

Ho and Manne 1974), basis factorization (Fourer 1979), partitioning
(Rosen 1963), and other computational techniques.

Uncertainty about some parameters of the program can, however,
cause difficulties. The random coefficients are often replaced by their
expected values, but the solution of the corresponding expected value
program might not be optimal for the stochastic program. The error
resulting from replacing random variables by mean values can indeed be
quite large (Kallberg, White and Ziemba 1982). Using a single determin-
istic value other than the mean can also lead to large inaccuracies (Birge
1982). In these cases, a stochastic program allowing for several possible
coefficient values must be solved to obtain an optimal solution. The
deterministic equivalent linear program for this stochastic program is
usually very large, and standard solution procedures are costly.

This paper gives two methods for solving these large scale programs
by exploiting their structure. It first presents the methods and then
compares them with the standard simplex method on a set of test
problems.

The first method is an outer linearization decomposition approach
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that extends the two stage L-shaped method of Van Slyke and Wets
(1969). The procedure approximates the convex objective term in the
stochastic program by successively appending supporting hyperplanes.
In multistage programs, the supports are found by optimizing a sequence
of nested problems of the same form. Each problem has a linear objective
term for current costs and a convex objective term representing future
costs. The solution procedure is described in detail in Section 2.

As shown in Section 2, the optimization problems solved to obtain the
supporting hyperplanes in the decomposition method are degenerate. As
a consequence, the method might append many similar supports, a
difficulty that motivated the development of the second method, a
piecewise partitioning strategy. This approach determines the optimal
first period decision by partitioning the feasible region of the equivalent
convex program into regions of linearity for the objective. A linear
optimization is performed on adjacent regions until no adjacent region
yields an improved solution. The regions and structure of the objective
are again found by optimizing similar nested problems that determine
optimal future decisions given current decisions and outcomes. The
partitioning strategy is described in Section 3. Section 4 applies both
algorithms on a set of test problems.

1. PROBLEM FORMULATION

The stochastic linear program with fixed recourse was first formulated
by Beale (1955) and Dantzig (1955). A multistage version is

minimize
z2=c1x + Eg[min coxy + -+ + E¢[min crxq] - -]
subject to
A1x1 = bl, (1)
_B1x1 + Agxz = 52’
—Br_1%X7-1 + Arxy = Er,
x: =0, t=1,...,T, gteEt, t=2,...’T,
where ¢; is a known vector R™ for t = 1, ..., T, b, is a known vector

in R™, ¢ is a random ms-vector defined on the probability space
(5, ¥y, F;) fort =2, ---, T, and A, and B; are correspondingly dimen-
sioned known real-valued matrices. Transposes have been eliminated
for simplicity. “E;” represents the mathematical expectation with
respect to &..
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The vector x; in (1) represents decisions made in the first period.
These decisions are nonanticipative, or independent, of any specific
realization of the random outcomes. Future decision vectors x, depend
on previous outcomes, &, - - -, £, and decisions, x;, - - -, x;—1. The problem
is to determine a first period decision that minimizes the sum of current
costs, ¢, x;, and the expected values of all future costs until some time 7.

Several solution methods have been proposed for program (1) with two
periods and finite distributions. Dantzig and Madansky (1961) showed
how the dual of this problem could be solved using Dantzig-Wolfe (1960)
decomposition. Kall (1979) and Strazicky (1980) presented another dual
method based on basis factorization. Van Slyke and Wets, however, gave
a method for solving the primal problem using outer linearization, or
Benders’ decomposition (Benders 1962). Section 2 presents an extension
of this algorithm for multiple periods.

Other methods have been applied to the simple recourse problem in
which Ar = [I } —I]. For two periods, Wets (1974, 1975, 1983) has
presented methods based on discrete distributions and splines. For three
periods, Everitt and Ziemba (1979) showed how a variant of the Frank-
Wolfe algorithm could solve the problem. Numerical results from a
modification of this algorithm appear in Kallberg and Ziemba (1981).
Applications include many problems in dynamic economic planning (Fox,
Sengupta and Thorbecke 1966; Theil 1964) and financial planning (Kall-
berg, White and Ziemba; Kusy 1978; Bradley and Crane 1972, 1976).

For multistage problems, an appropriate horizon length, T, is difficult
to determine. The horizon should be distant enough for present decisions
to reflect the future accurately, but short enough to allow for efficient
computation. Grinold (1980) has shown that, under appropriate condi-
tions, finite horizon solutions can be found that are close to an infinite
horizon optimum. He has also presented methods based on steady state
future decisions and resource values that can diminish the end effects
associated with finite horizons (Grinold 1979, 1983). In other papers,
Grinold has formulated the multistage stochastic program as a finite
Markov chain (Grinold 1976) and as equivalent primal and dual optimi-
zation problems (Grinold 1979).

Beale, Forrest and Taylor (1980) consider a multistage production
model. They show that a backward recursion with an appropriate ap-
proximation can obtain results that are very similar to exact dynamic
programming solutions. They use a piecewise linear approximation that
might crudely represent the actual distribution, but might still produce
a “fairly” accurate solution.

The general multistage problem (1) can be modeled as a dynamic
program with stages 1, - --, T and states y, = Byx, fort =1, ..., T — 1.
An optimal solution to (1) can in principle be found by backward
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recursion using

2e(ye—1) = Ez,[f(}’t—l, &), (2)

where

(Y1, &) = min(x,,y,)ctxt + 2e01(ye)

subject to  A;x; = & + Yi-1, 3)
B.x; = yi,
X = 0.

When t = T, By = 0 and 274,(0) = 0.

An optimal set of first period decisions, x¥, is found by solving (3) with
b, replacing £, for ¢t = 1. The dimension of y; might, however, make direct
implementation of this procedure impossible. The methods given in the
following sections use outer linearization and piecewise linear partition-
ing to approximate 2.4:(y;). This simplification makes the recursion in
(3) calculable.

2. A NESTED BENDERS’ DECOMPOSITION METHOD

Many decomposition methods can be viewed as employing the funda-
mental strategies of outer linearization (e.g., Benders) or inner lineari-
zation (e.g., Dantzig and Wolfe). Geoffrion (1970) classified large-scale
programming algorithms according to these problem manipulations, and
Kallio and Porteus (1977) discussed their application to dynamic linear
programs. The Ho and Manne application of inner linearization to
successive stages of dynamic linear programs is nested decomposition as
in Glassey (1971, 1973).

Ho and Manne’s procedure requires a time consuming Phase III to
obtain primal variable values. It is also particularly difficult to adapt to
stochastic programs because it begins with the last-period problem as the
first master problem. In stochastic programs, the large number of these
last-period problems would render Ho and Manne’s approach impractical.
Outer linearization procedures, such as the L-shaped method (Van Slyke
and Wets), are preferred because they can solve a group of last-period
problems together.

The L-shaped method can be extended to the multi-stage method
presented in this section. The approach maintains primal variable values
and avoids a Phase III procedure. It can be alternatively described as
applying inner linearization to the dual of (3). It is based on the following
result:
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PRrROPOSITION 1. The mathematical program (3) is equivalent to

minimize  cx; + Qui1(x:) (4.1)
subject to  Ax; = & + Bi—1%i-1, (4.2)
Dix,=d., I=1,..-,q, (4.3)

x =0, (4.4)

for some convex function Q.1(x.), n.vectors D:, constants di, and
q = M4,

Proof. See Wets (1966), Proposition 6.

Feasibility cuts (4.3) are used to induce a feasible solution at stage
t + 1. They can be constructed sequentially as in the L-shaped method
of Van Slyke and Wets. Outer linearization is then applied to an alter-
native formulation of (4):

minimize c¢.x; + 6, (5.1)
subject to A, x; =& + Bi-1%4-1, (5.2)
Dix, =d!, I=1,-.---,q, (5.3)
—Qe1(x) + 0. = 0, (5.4)
X = 0. (5.5)
PROPOSITION 2. Constraint (5.4) in problem (5) fort =1, ---, T can be
replaced by linear constraints
Elx,+0,=e, I=1,---,p, 6)

where p < myy + 1 <+, Elis an n.-vector and e! is a constant.

Proof. See Van Slyke and Wets for a proof of this result. The bound
on p is due to Murty (1968) and is a straightforward result of the basic
property of optimal solutions to convex minimization problems with
linear constraints.

Program 5 is solved by forming a relaxed problem excluding (5.3) and
(5.4) and by successively adding constraints (5.3) and (6) until a solution,
(x¥, 0F), of the relaxed problem is found that satisfies Q,,(x¥) < 67. For
the algorithm to be used, we must assume that a finite number, K;, of
scenarios is possible for each t. The scenarios can represent discretiza-
tions of continuous random variables as in Dantzig and Madansky and
Van Slyke and Wets. Program 5 must be solved for each scenario. The
scenarios consist of all possible realizations of the vectors from periods
one through t. For example, in a three period problem with two realiza-
tions of the random vector in each of periods two and three, there are
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Figure 1. Stages and decisions for a three-period problem.

four scenarios in period three. Each period-three scenario has an ancestor
scenario in period two, and each period-two scenario has two descendant
scenarios in period three (see Figure 1). In general, the random vector
for scenario j in period t is & for j = 1, ---, K,. Many of these values
might, however, be identical. The relaxation of (5) for period ¢ and
scenario j after r’ constraints (5.3) and s} constraints (6) have been added
is

minimize  c.x} + ¢} (7.1)
subject to A,x} = & + B, xY) (7.2)
DYxi=dY, 1l=1,---,r] (7.3)

Ebxi+ =€, 1=1, ..., 5 (7.4)

% =0, (7.5)

where a(j) is the ancestor scenario of j in period ¢t — 1, and x{Y] is the
current solution of the a(j) scenario problem in period ¢ — 1. The
multistage nested decomposition first obtains a feasible solution for (7)
for all ¢ and j and then solves (5) sequentially from periods T to one
using the relaxation (7).

Nested Decomposition for Stochastic Programming Algorithm
(NDSPA)

Step 0. Solve (7) for t = 1 where 6; = 0, r; = s; = 0, and (7.2) is replaced
by

A1x1 = b1 . (8)



Multistage Stochastic Linear Programs 995

(The scenario index j has been dropped for the period 1 problem.)
Set ¢} = 0 and r} = s} = 0 in problem (7) for all ¢ and scenarios j
at t. (The r} and s/ indices are updated whenever a constraint
(7.3) or (7.4) is added to (7).)

Step 1. If the period 1 problem (7) is infeasible, STOP. The problem is

infeasible.

Otherwise, let x; be the current optimal solution of (7) for ¢t = 1.
Use x; as an input in (7.2) for t = 2. Solve (7) for t = 2 and all
g"Zy.’ = 11 ) KZ-

If any period two problem is infeasible, then add a feasibility
constraint (7.3) to (7) for t = 1, re-solve for t = 1, and
return to 1.

Otherwise, let t = 2 and go to 2.

Step 2. a) Let the current period t optimal solutions be &} for j = 1,

..., K;. Solve (7) fort + 1and all j =1, ---, K;4; using
the appropriate ancestor solution &/ in (7.2).

b) If any period ¢ + 1 problem is infeasible, add a feasibility
constraint to the corresponding ancestor period ¢ problem
and re-solve that problem.

If the period ¢ problem is infeasible, let t = ¢t — 1.
Ift=1,goto 1.
Otherwise, return to 2a.
Otherwise, return to 2a.
Otherwise, all period t + 1 problems are feasible.

Ift<T-2,lett=1t+ 1 and return to 2a.

Otherwise (t = T — 1), remove any remaining 6. = 0
restrictions for all periods 7 and scenarios j at 7 and, for
each of these, let the current value of #/ be § = —oo,
Go to 3.

Step 3. a) Find EY and e/ for a new constraint (7.4) at each scenario ¢
problem (7) using the current period ¢ + 1 solutions.
The vector E¥ is calculated as — Yu; wiciB: and e¥ =
Yai) w;’ifl’g?iq where the d(j) scenarios are the descendants of
j and 7% is an optimal dual vector in the d(j) descendant
problem.

b) If some j satisfies

bl < el — EVil, 9
then add the new constraint (7.4) to each period ¢ problem
(7) for which (9) holds. Solve each period ¢ problem (7). Use
the resulting solutions (&4, 8%) to form (7.2) for the corre-
sponding descendant period ¢ + 1 problems (7) and re-solve
each period t + 1 problem (7).

Ift<T-—1,lett=¢+1 and go to 2a.
Otherwise, return to 3a.



996 Birge

Otherwise, 05 = et — E% & for all scenarios j at t.
Ift>1,lett=1t— 1 and return to 3a.
Otherwise, STOP. The current solutions ¥/, r =1, ---, T
form an optimal solution of (1).

Steps 1 and 2 of NDSPA form a forward pass through all periods to
rapidly locate a feasible solution of (1). Step 3 is a backward pass to solve
the dynamic programming recursion defined by (2) and (3). This opti-
mization phase might take much longer than the forward pass since
many marginal changes in the last periods could be necessary before the
initial period solutions are even considered. In general, the forward pass
proceeds from Step 1 to Step 2 and iterates in Step 2 until a feasibility
cut is sent back to period 1 or a feasible solution is found for period 7.
The backward pass starts from Step 3 and proceeds to Step 2 when an
optimality cut is placed in any period before T' — 1. The general path in
terms of NDSPA steps might require the following steps:

Forwardpass: 1 22 =2=1=2 ... 222=3=
Backwardpass: 3 =22=2=3=2=2=

o= 2=3=3= --- = 3 = optimal.

Remarks

1. Unboundedness can be resolved by the procedure in Van Slyke and
Wets. Their method considers the half-line along which the objective
in (7) goes to — as the sum of a basic solution of (7) and multiples
of a homogeneous solution of (7). The descendant problems are solved
with the basic and homogeneous solutions as inputs in the right-hand
side of (7.2) to determine whether a new feasibility cut can be added
to the ancestor problem. In practice, unboundedness is avoided by
giving each variable a finite upper bound.

2. The algorithm proceeds back from t to ¢t — 1 after a finite number of
steps since there are finitely many scenarios in each period. The
forward pass to obtain feasibility also proceeds forward in a finite
number of steps. Hence, the algorithm converges finitely.

3. The constraint matrix A, is the same for every scenarioj =1, .- -, K.
A single basis factorization could, therefore, be stored for many
scenarios. Bunching (see Wets 1983) or sifting (Garstka and Ruten-
berg 1973) procedures are used to pass efficiently through the set of
random vectors to find all & for which a basis is optimal. Our
implementation of NDSPA uses bunching for period 7. Additional
constraints in earlier periods make a repeated basis difficult to obtain,
although common m; X m, working sub-bases could be found.

4. Degeneracy might lead to many repeated solutions of problems (7) for
a single period t scenario. Abrahamson (1980) observed this behavior
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in deterministic multistage linear programs and presented a method
for avoiding degeneracy. His procedure does not directly apply to
stochastic programs, but an alternative is given in Birge (1980) that
creates an intermediate problem between an ancestor problem (7)
and its descendant problems. By design, the proposed partitioning
method of Section 3 also decreases the number of optimizations of
problems (7).

The following propositions describe the degeneracy discussed in Re-
mark 4. They are proven in Birge (1980) and follow directly from the
basis property of an optimal solution of (1).

PROPOSITION 3. Let scenario j’' at period t + 1 generate a feasibility
constraint I’ of type (7.3) for the ancestor scenario j at period t. If constraint
1’ of type (1.3) is binding for some solution, %, of (7) for scenario j at
period t, then every basic feasible solution of problem (7) for scenario j' at
period t + 1 with %} input in (1.2) is degenerate.

PROPOSITION 4. Let the set of descendant scenarios of j at period t be J'.
If two constraints of type (71.4) are binding at some solution (&}, 83) of (7)
for scenario j at period t, then every set of optimal solutions of problems
(7) for period t + 1 and descendants j’ that has % input in (7.2) and that
produces EY and eY that do not satisfy (9) includes a degenerate solution
for somej’ € J’.

3. A PIECEWISE LINEAR PARTITIONING METHOD

The independence of the scenario j problem (7) at period t from its
descendant problems j’ at period ¢t + 1 leads to the degeneracy problem
of NDSPA. The same set of basic variables might occur in several
consecutive optimizations of the period ¢ problem. The partitioning
method of this section attempts to avoid this situation by forcing a basis
change.

NDSPA also does not explicitly maintain primal feasibility throughout
the backward pass. As a result, it might be difficult to bound the
optimal solution value before the algorithm has terminated, although
feasibility always holds in proceeding from Step 2 to Step 3 at which
time the objective increases monotonically. The partitioning method
avoids infeasibility after the algorithm has found an initial primal feasible
solution.

The finite scenario assumptions and notation from the NDSPA dis-
cussion apply to the partitioning method. The basic idea of the method
is similar to Rosen’s algorithm. The method minimizes a convex function
at some point in a subregion of the feasible region. It then searches all
subregions adjacent to the current point for a lower value. If none is
found, then the procedure stops, and the current point is optimal.
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Subregions in our method correspond to regions of linearity of @+ (x;)
in (4). Consider scenario j at period T' — 1. The scenario index j will be
dropped from the decision vector x_; to simplify notation. Let the
descendants of j be scenarios j’ = 1, - - -, k, and let a corresponding set
of dual feasible bases in problem (3) for period T'be HY, - - -, H*. If xr,
satisfies

(H) (& + Bro12r-1) = 0 (10)
fori=1, ..., k, then

Qr(xr—1) = Grar— + Cry, (11)
where the np_;-vector §r and the constant Cr_; depend on H?, --., H*

and &%, - - -, £%. These parameters are formed directly by multiplying the
left-hand side of (10) by the corresponding objective coefficients and by
summing each of these terms weighted by the probability of each scenario.
Hence, the restriction of problem (4) to linear subregions yields the
program

minimize 27_; = ér_1x7—1 + Cr_1 (12.1)
subject to Ar_1X7_1 = Ep—1 + Br_oXr_s, (12.2)
Graxr1 =g, =1, ...,k (12.3)

xr-1 = 0, (12.4)

where

Cr-1 = ¢r—1 + qr,

s = (H) Bros,

gr = —(H) ¢,
and %r_. is the current ancestor period T — 2 solution. Let the optimal
solution of (12) be x%_; with value z%_;. The solution x%_; solves (4) for
T — 1 if none of the constraints (12.3) is binding. A binding constraint
(12.3) for some i corresponds to a degeneracy in the corresponding period
T problem. An adjacent optimal basis can be found in descendant problem
i, and (12) can be reformulated on an adjacent region of linearity. The
objective value of (12) on the adjacent region is 2%, and the correspond-
ing solution is £7_;.

The partitioning method lists all binding constraints (12.3) for x%_;
and proceeds through the list by solving an adjacent problem (12) until
some z%_; is found satisfying z%_; < z%_;. If none is found, x%_, is again
optimal for (4). When 2%_; < 2%, then 24, = 2%, and x}_; = %_;.
The process is repeated for binding constraints of x%—;. The method
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continues to increment the index of zr_; and x7_, whenever a better
solution is found. When 2%, is found so that no adjacent z}, < 2%,
then x¥_; is optimal for (4). The method converges finitely because
271> --. > 2%, and only a finite number of basis sets are possible in
the period T problems.

Substantial storage reductions are possible if only distinct bases are
used in constraints (12.3). G _; might be the same for several descendant
scenarios i. These constraints can be combined by defining gi_, to be
the maximum in each component among the descendants associated with
a single basis.

The full multistage partitioning algorithm follows the same fundamen-
tal flow as NDSPA. First, a forward pass obtains a feasible solution and,
then, a backward pass achieves optimality. Linear subregions are found
for programs of type (12) for periods t < T — 1 by constructing constraints
(12.3) to ensure primal feasibility in all future periods.

Piecewise Linear Partitioning Algorithm (PLPA)

Step 1. Follow Steps 0, 1 and 2 of NDSPA to obtain a feasible solution
of (1). Lett=T,j=0,and M = —1.
Step 2. If t = 0, STOP. The current solution %; is an optimal first period
decision in (1).
Otherwise, let M = M + 1.
If M =0, let j = + 1 and solve (12) for scenario j and period
t to obtain z? and x{. Re-solve (12) on adjacent regions of
linearity until z%_, is found satisfying 2%_, < z{. Let 2z} =
z%_; and x} = £%_,. Return to 2.
Otherwise, if z¥ = 2X1 let M = —1.
Ifj=K,lett=t—1,j=1,and M = —1. Return to 2.
Otherwise, let j = j + 1 and return to 2.
Otherwise, re-solve (12) for j and t on adjacent regions of

linearity until 2 is found satisfying 2 < zM. Let 2M*! =
M 1M+ = M and return to 2.

Remarks

1. Unboundedness in any problem (12) implies (1) is unbounded. In
practice, bounded variables are assumed.

2. The algorithm converges finitely because each period ¢ problem (4) is
solved finitely by the partitioning method.

3. Primal feasibility is maintained throughout Step 2 of PLPA. The
restrictions in (12.3), however, steadily increase as ¢ decreases.

PLPA’s advantages over NDSPA are increased connections between
ancestor and descendant problems and the preservation of primal feasi-
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bility. The problems (12) at each period ¢ are, however, larger than the
problems (7) solved by NDSPA. A comparison of PLPA and NDSPA on
a set of test problems follows.

4. COMPUTATIONAL RESULTS

Two FORTRAN programs, NDST3 and PCST2 (Birge 1981), were
written to implement NDSPA and PLPA, respectively. Linear programs
of types (7) and (12) were solved using LPM-1 (Pfefferkorn and Tomlin
1976).

NDSTS3 currently solves problems with up to four periods. For a four-
period problem, the program allows up to three realizations of the right-
hand side in the second period followed by up to three descendants for
each of these scenarios in the third period. In the last period, the program
allows up to 125 different realizations of the right-hand side vector (e.g.,
three random variables with five realizations each) for each of the nine
period-three ancestor scenarios. This choice results in up to 1125 period-
four scenarios.

The size of each problem (7) solved by NDST3 does not exceed 350
rows, 600 columns, or 3000 nonzero elements. The number of last period
realizations of the right-hand side vector could be increased without
significantly enlarging storage requirements because NDST3 stores dis-
tinct bases only for the last period. For periods ¢t < T, each problem (7)
is solved separately. Any increase in the number of these intermediate
period problems would, therefore, proportionally increase storage. Out of
core storage might, however, allow for more possibilities.

PCST2 currently applies only to two stages. Attempts to implement
the code for more periods showed that multistage storage needs would be
much greater than the two-stage storage requirements. PCST2 allows up
to 125 realizations of the right-hand side vector. Each problem (12)
solved contains at most 350 rows, 600 columns and 3000 nonzero ele-
ments. PCST?2 uses bunching to solve second period problems efficiently
and could, therefore, be easily expanded to allow for more right-hand
side realizations.

PCST2 and NDST3 can be compared with existing codes for simple
recourse problems. Kallberg and Kusy (1976) have coded Wets’s (1974,
1983) algorithm for two period (T = 2) simple recourse problems. Their
code allows up to 70 random variables with eight realizations each in a
program with up to 220 rows. This problem size could again be easily
expanded to allow for more possible right-hand sides.

NDST3 and PCST2 were tested on stochastic versions of problems
from Ho and Loute (1981), which are practical deterministic multi-stage
problems with staircase structure, as in the constraint matrix of (1). For
comparison, each problem had three periods and eight right-hand side
realizations. The full deterministic equivalent problem to (1) could then
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be easily solved to provide a check on the solution values. Note, however,
that NDSPA and PLPA would probably be most useful in problems for
which a full deterministic equivalent linear program cannot be solved
directly.

The test problems have the following applications.

Problem Application
SC205 Economic development
SCAGR7 Agricultural planning
SCRS8 Dynamic energy modeling
SCSD8 Structural design optimization
SCTAP1 Dynamic traffic assignment
SCFXM1 Production scheduling.

Size characteristics of these problems appear in Table I. The dimensions
of the deterministic equivalent program appear in the columns headed
“Totals.” Descriptions and problem origins appear in Ho and Loute.

The optimal values in Table I were obtained by solving the full
deterministic equivalent program using the mathematical programming
code, MINOS (Murtagh and Saunders 1978), on The University of
Michigan’s Amdahl 470/V8 computer. Mean values were also substituted
for the random variables to obtain the mean value problem also solved
by MINOS. The CPU times in seconds (excluding input and output) and
iterations for MINOS to solve each problem (“Mean” and “Full”) appear
in Table II. Table II shows the significant increase in times from the
mean value problem to the stochastic problem. The ratio of stochastic
problem time to mean value problem time on MINOS ranges from 11.6
for SCRS8 to 29.6 for SCTAPI.

The test problems were each solved by NDST3 and PCST2 on the
Amdahl 470/V8 using the standard FORTRAN-G compiler without
optimization (The University of Michigan Computing Center 1980). Each
problem has three periods, but an equivalent two-period problem
can be formulated by making the second-period objective include the
expected value of third period objective. The second period of the two-
period equivalent problem then determines both period-two and period-
three decisions in the original problem. The results from NDST3 on both
the two-period and three-period equivalent problems appear in Table II.
The results of PCST2 on the two-period equivalent problem also appear
in Table II. In general, the number of cuts (12.3) on problem (12) for
PCST?2 becomes quite large as ¢ decreases. For the problems in Table II,
the maximum occurs in SCAGRY7 in which 4m,, or 120, constraints (12.3)
are added to the 15 constraints (12.2). CPU seconds in Table II do not
include problem input or solution output. Table II also gives the number
of simplex pivots and the number of distinct problems (7) for NDST3
and problems (12) for PCST2.
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1004 Birge

In the first five test problems, NDST3 with the two-period formulation
had the lowest CPU times. The ratio of these times to the mean value
times ranged from 0.4 for SCSD8 to 1.8 for SCAGRYT. This experience is
consistent with Kallberg and Kusy’s results where these ratios ranged
from 1.5 to 2.

The number of distinct problems (7) and (12) solved by NDST3 and
PCST?2 is another indication of solution difficulty. The lowest numbers
of these optimizations occur in problems (SCRS8, SCSD8, SCTAP1)
that have optimal solutions with exactly m; basic first period columns.
NDST3 and PCST2 exploit the decoupling property that this suggests.
The optimal solution found for SCAGR7 had m; + 1 basic first period
columns, and the SC205 optimal solution obtained had m; + 2 basic first
period columns. To find these extra columns, the computation times
increased.

In the examples, the three-period formulation and partitioning do not
appear advantageous. These results on a small set of problems without
advanced storage techniques should, however, not be considered defini-
tive. The basic reason for good performance relative to MINOS appears
to be simply the elimination of repeated pivot steps for each scenario.
Degeneracy did not appear to cause difficulties in the first five problems.

The example SCFXM1 displayed confounding behavior for both
NDST3 and PCST2. The forward pass generated many feasibility cuts
(7.3). After 23 of these dense cuts were placed on the first period problem,
the model exceeded the maximum nonzero element number (3000). Some
cuts could have been deleted, but the optimal MINOS solution contained
my + 7 first period basic columns. This linking indicates that several cuts
were necessary. In general, the first period problem could require m,
completely dense cuts or m, - n; additional nonzero elements.

Excessive nonzero element growth is one of the potential difficulties
in decomposition and partitioning procedures. Smaller problems have
not demonstrated this property (Birge 1980), but the solution method
should incorporate some check on nonzero element growth and should
delete slack cuts. Overall, the problems (7) solved by NDST3 are still
much smaller than the full deterministic equivalent linear program. For
T=2,if v(1),v(2), and v(3) are the numbers of nonzeroes in A;, B;, and
A, respectively, then the deterministic equivalent linear program has
v(1) + Ky(v(2) + v(3)) nonzeroes in the constraint matrix. The period
one problem (7) contains at most v(1) + n,II nonzero elements, where
II is the number of times (7) is solved. When II is small as in the first
five examples, the number of nonzeroes is also small.

5. SUMMARY

This paper presented two algorithms for multistage stochastic linear
programs. The methods are based on decomposition and partitioning
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procedures that are common in large scale mathematical programming.
Computer codes for these algorithms were applied to a set of practical
problems from a variety of application areas. The methods solved five of
these problems in substantially fewer iterations and less time than a
standard linear programming approach, but one problem generated an
excessive number of nonzero elements. The results seem to indicate that
efficiency gains result mainly from eliminating repeated solutions of
similar scenario problems.
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