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The problem of planning under uncertainty has many aspects; in this paper
we consider the aspect that has to do with evaluating the state of informa-
tion. We address ourselves to the question of how much better (i.e., how
much more profitable) we could expect our plans to be if somehow we
could know at planning time what the outcomes of the uncertain events
will turn out to be. This expected increase in profitability is the ‘ex-
pected value of perfect information’ and represents an upper bound to the
amount of money that it would be worthwhile to spend in any survey or
other investigation designed to provide that information beforehand.
In many cases, the amount of calculation to compute an exact value is
prohibitive. However, we derive bounds (estimates) for the value. More-
over, in the case of operations planning by linear or convex programming,
we show how to evaluate these bounds as part of a post-optimal analysis.

E CONSIDER a situation in which the profit (or other measure of

desirability) depends upon the decision as to which particular action
we take, and the outcome of some random event. An example is given by
the situation in which we must manufacture to meet market demands.
The decision is how much to manufacture, the random event is the market
demand that will occur, and the profit depends on both of these variables.
Quite generally, let x be the decision variable and let z be the random
variable. We write ¢(x, 2) for the profit. Note that  and z may each be
vectors.

We are interested in problems where the decision variable  must be
chosen first, then the random variable is observed, and finally there is
recourse to some contingency plan to tidy up. If we wish to maximize
expected profit (if not, we replace ¢ by some other utility function), we
choose = so as to maximize Fo(z, z2). We call this the recourse problem
(RP), using a terminology similar to the one introduced by WALKUP AND
WeTs. 81 We write

RP=max, Eo(z, 2) (1)

as the maximum expected profit in such a situation.

If, however, we were able to reverse the order of events, i.e., if we could
wait and see what random event would occur before we had to make a
decision, then we could choose z so as to maximize ¢(z, 2) for the z that
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actually oceurs. The expected profit in this case, which we call, according
to terminology introduced by A. MADANSKY, 8! the wait-and-see (WS) case,
is therefore

WS =FEmax.o(z, 2). (2)

It should be intuitively clear that the expected profit in the wait-and-see
case is always at least as great as that in the recourse-problem case. For-
mally, it is easy to show (Theorem 1) that WS= RP, with the above defini-
tions, for any real function ¢(z, 2) and for any probability distribution
function, subject only to the existence of the maxima and expected values
involved.

Given a choice, therefore, with other considerations equal, the wait-
and-see situation is always a better one than the recourse-problem situa-
tion; in faet, it would generally be worthwhile to pay an amount up to
WS—RP to move from the recourse problem situation to the wait-and-see
situation.

Consider, then, a decision maker with a recourse problem situation.
He may ask whether it is worthwhile to buy information about the random
variable that may influence his decisions. In some cases, this might mean
making a market survey; in other cases, it might mean inducing the cus-
tomers to commit themselves in advance to what their demands will be.
In any case, he is asking how much money it would be worthwhile to spend
in order to know what the value of the random variable is, so as to know it
before he has to make his decision 2. In buying information, then, he is
changing his situation from the recourse one to the wait-and-see; the maxi-
mum amount that he would pay therefore would be the difference WS—RP.
This difference has been called the expected value of perfect information,
EVPI.% 51 We write

EVPI=WS—RP. ®3)

BOUNDS FOR THE EXPECTED VALUE OF PERFECT INFORMATION

AGAIN, LET ¢(z, 2z) be the profit as a function of the decision x and the
random variable z. Ep(x, 2) is the expected profit for decision z. The
recourse problem is then the problem in which x must be chosen before
knowing the value of z, and the expected value of perfect information is, by
(1), (2), and (3),

EVPI=Emax, ¢o(z, 2) —max, Ee(z, 2). 4)

THEOREM 1. Let the expected values and the indicated maxima exist. Then
EVPIZ=O0.

Proof. For every £, and 2, we have max, o(x, 2)=o(£, 2). If we now
take expectations on both sides and choose £ so as to maximize Eo(z, 2),
we obtain BV PI =Emax, o(x, 2) —Ee(%, 2) 0.
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While the result is obvious, and well known, it deserves mention in
order to emphasize that no assumptions other than the existence of expected
values and maxima are involved. In particular, it is not necessary to
assume that ¢(z, 2) is concave.

Formula (4), which defines the expected value of perfect information,
is not generally useful for calculation, since the WS term, i.e., Emax, ¢(z, 2),
generally involves a prohibitive amount of caleulation, sometimes even to
approximate it. It requires, in general, that, for each possible z, the
optimization problem max, ¢(x, z) be solved. To obtain more information
on the problem of solving a wait-and-see program, the reader is referred to
Bereanu ! and to the references cited there.

If we assume that ¢(z, 2) is a concave function, it is possible to compute a
bound for the expected value of perfect information.

Let ¢(2) be a concave function of the random variable (generally a
vector) z. For any point 2° at which ¢ is differentiable, we may write

¥(2) SY(2°) + V(") (z—2"). (5)

Actually, even if ¢ is not differentiable at 2, this formula is valid, provided
we interpret Vy(z°) as a vector, each component of which is any value less
than or equal to the left partial directional derivative and greater than or
equal to the right partial. Assuming existence of first moments, therefore,

Ey(2) =¢(2°)+ V(") (Ez—2"). (6)

Now let ¢(z, 2) be a function conecave in z, such that ¢(z) = max, o(z, 2)
exists for all 2. Then (2) is concave, so from (6) we have

Emax, ¢(z, 2) Emax, o(z, 2°)+ Vi (2?) (Ez—2°). (7)
From (4) and Theorem 1,

0=< EVPI <max, ¢(z, 29) —max, Ep(z, 2)+ V(") (Ez—2°) (8)

for any 2°.

Since (8) holds for any 2°, we may ask which 2° will give the best esti-
mate, in the sense of giving a tightest bound.
THEOREM 2. The best possible bound for an estimate of the type (8) s obtained
by choosing 2°=Ez.

Proof. We have to show that the function F(2°) defined by

F(2°) =max, o(z, 2°)+ Vi(2°) (E2-2°) =¢(2°)+ V(2°)(Ez—2°)

has a minimum at 2°=FEz. Since ¥(z) is concave and is assumed to exist
for all 2z, Y(Ez) Sy (2%)+ Vi (2°)(Fz—=2%), so that F(Ez)=y(Ez)<F(2°) for
all 29,
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When 29 is set equal to Ez in (8), we obtain
0=EVPI=max, ¢(zx, Bz) —max, Fo(z, 2).

The first term on the right-hand side is the maximum profit obtainable in a
deterministic problem (EV), formed by replacing the random variable z by
its expected value Ez. Then we have EV =max, ¢(z, E2). Inequality (8)
may be rewritten as

0<EVPI<EV—RP. (9)

The evaluation of this ‘best’ estimate requires, however, the calculation
of an optimal solution of a stochastic problem (RP) and the calculation of
an optimal solution of a deterministic problem (EV). We now develop a
bound for the EVPI that, while it is not generally as tight as (8) or (9),
does not require so much calculation.

Let 2(2°) maximize ¢(z, 29), i.e., let 2(2°) satisfy o[z (2?), 2°] = max, ¢(z, 2°).
Note that, for any 2°, max, Fo(z, 2) = Eo[z(2°), z2]. Combining with (8),
therefore, we have

0=EVPI =¢[z(2"), 2] — Eolx(2), 2]+ V(") (Hz—2°). (10)

By means of this formula, we may evaluate a bound on the expected
value of information, and the only optimization problem we have solved is
a deterministic one, formed by replacing the random variable by any value
2% subject only to the proviso that the optimization calculation also yields
the ‘sensitivities’ required to evaluate Vy(z°). We shall expand on this
point in the next section.

APPLICATION TO STOCHASTIC PROGRAMMING
Stochastic Linear Programming

We first consider the case in which the manufacturing process is de-
scribed by a linear activity analysis model, i.e., by a linear program, and in
which the right-hand side, representing the demands, is an m-dimensional
random vector. We assume the manufacturer’s problem can be described
by a linear program of the form

min ¢cx subject to Ax=z, £=0. (11)

Here, 2 is the supply/demand vector, and the components of y=Az are
the amounts, as a function of the decision vector z, of the various commodi-
ties produced (net after disposal of excess, if necessary), or used up.

If the demand is a random variable whose value is revealed only after «
(and therefore Az) have been determined, we cannot require Ax =z; rather,
we define a recourse function g, which specifies an extra cost (or revenue)
as a function of the difference z— Az or z—y. The problem of choosing
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so as to minimize expected cost, then, is a special case of the recourse prob-
lem of the first two sections, where

oz, 2)=—cx—g(z— Ax). (12)

We shall assume that the recourse function ¢ is convex, so that ¢(z, 2) is
concave. We also assume ¢(0)=0.

The recourse function is supposed to represent the cost of ‘emergency’
supply in case too little of a commodity is produced, or the revenue from
an ‘emergency’ disposal market if too much is produced; therefore, we
would not expect that the activity whose cost is given by ¢ would be used
at all if the demand 2 were known beforehand, even if that activity were
available. Alternatively, we could say that if that activity were available
at the time of planning z, it should be included in the A matrix, making the
original problem nonlinear, but still convex.

Either way, the condition that the emergency supply or disposal possi-
bility would not be used at the time of planning z is that for a particular
value of 2 the dual solution 7* for the linear program (11) satisfy

Vg-(0) =7*= Vg4.(0), (13)

where Vg_(0) and Vg.(0) are, respectively, the vectors of left and right
partial derivatives of g at zero level. In the case of ‘linear’ recourse,®!
for example, we assume g is given by

vilz—Ax);, if (2—Ax);=0,

g(z—y)=g(z—Ax)=D; (14)
8i(z—Ax);, if (z—Az);=0,

and the above condition is then just §<7r*=<4.

Let us describe how the estimates of the expected value of information
could be made in practice. Imagine that an operations planner sets up a
linear program of the type (11), on the basis of some definite demand vector
2°. He then obtains an optimal primal solution z*, and an optimal dual
solution 7*. That is, he follows the present procedures for setting up and
solving a linear program.

As part of his post-optimal study, he then asks what if some of the
demands should really have been considered as random variables. He
then proposes a reasonable probability distribution function for the demand
vector, and in addition, proposes a recourse function g. Suppose for this g,
(13) is satisfied. Now, he asks, what would be a bound on the value of
demand information, i.e., what would be an upper limit to the amount it
would be worth while spending to find out beforehand what the demands
would be?
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Relation (10) may be used. The term o[z (29), 29 is just ¢(z*, 2°), which,
in turn, is just —cax*—g(2'— Aa*)= —cx*, since g(0)=0. The second term
LEo(x*, 2) reduces to —ca*— Eg(z— Ax*). To evaluate the third term, we
use the fact that if the dual optimal solution is unique, then —z*= Vy(2%);
and if not, every dual solution has the property that —;* is between the
right and the left partial derivative of ¥(29).I"! Thus, in any case, —r*
may be substituted for Vy¢(2°), thus obtaining 7*20—7*Ez. Relation (10)
is just

0 EVPI<Eg(z— Az*)—71*(Ez—2), (15)
which could easily be evaluated by hand or at most by a desk calculator if
g is a reasonably simple function to evaluate.

More General Stochastic Programs

It should be evident that there is no reason to restrict our attention to
the linear case; in fact if (11) were a convex nonlinear program, the analysis
would be exactly the same, and relation (13) is valid if the 7* are interpreted
as the Lagrange multipliers.

Generalization in the direction of several time stages is also possible in
principle. Suppose that having chosen z (and thereby y, from y=Ax)
and having observed z, the difference z—y is to be made up by solving a
second (possibly stochastic) optimization problem. If this second problem
is again convex, its maximum profit will be a convex function of the quantity
z—y, thereby defining the convex recourse function g. Generally, however,
this ¢ would be given by the wait-and-see problem connected with the
second stage, and so would not lead to a convenient calculation. Neverthe-
less, in some special cases the calculation might be made, and of course,
the possibility of again approximating by WS=EV, or by some other form,
should be taken into account.

Stochastic Programming with Quadratic Recourse

In case the recourse function g is smooth at zero, and can be represented
satisfactorily by a convex quadratic function,l% a particularly elegant
form of an estimate for the value of information can be derived directly
from (9). ‘We suppose that ¢ is given by

g(z—y)=qz—y)+(z2—y)' Q(z—y), (16)

where y = Az; ¢ is a constant vector, Q is a positive semidefinite matrix, and
the prime means transpose. Thus we have the case

oz, 2) = —cx—[q(z—y)+ (z—y)'Q(z—y)],
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which represents the ‘stochastic linear program with quadratic recourse.’
To evaluate (9), we have (with y=Ax)

EV=max,z { —cx—[q(Ez—y)+ (Ez—y)' Q(Ez—y)]}

=MaX.zo0 { —cx—q(Ez—y)+2y'QEz—y'Qy— (Ez) QEz},
and also
RP=max,s0 { —cx—Elg(z—y)+ (z—y)'Q(z—y)]}

=max,zo { —cx—q(Bz—y)+2y'QEz—y'Qy’ — E(ZQ2)},

from which we obtain by subtraction EV —RP = E[¢'Qz— (Ez)'QEz).

Every symmetric positive semidefinite (psd) matrix has a ‘square root,’
i.e., if @ is psd, there exists a matrix 7 such that 7T =Q (see, e.g., reference
1). In terms of T, then,

EV—RP=E[(T?)'(T2)— (TEz) (TE?)],
which is just the sum of the variances of the random variables (Tz);. Thus,
O0<EVPI< ) ;var(T?). (17)

In the case of stochastic linear programming with quadratic recourse
then, an estimate for the value of information can be written down im-
mediately, if only we know the recourse function and the probability dis-
tribution. In particular, for this case, it is not necessary to solve even an
approximate linear programming problem.

Ezxample. To illustrate the notions developed in the first part of the previous
section, we adopt an example from reference 9. This example is actually a modified
version of an example appearing in reference 3.

Consider the case of a manufacturer who is confronted with optimal production
planning with a random demand for one product. Suppose his manufacturing
and market situation is described by the model min z; subject to x1+4x,=100,
x1=2, 1120, 2, =0, where the random demand z is known to be between 70 and 80.
Suppose he plans as if the demand would be a fixed number, e.g., 22 =77. Solution
of the above program yields z,(2%) =77, x2(2°) =23, ¢(2°) = —77. TFor this value of
z, also, m* =0, m*=1.

In order to estimate whether it would be worthwhile to get better information
on the market before proceeding further, the manufacturer proceeds as follows.
First, he estimates the probability distribution of the random demand. Suppose
he estimates it as being uniform, i.e.,

0, if b=70,
Pr{z<b}={0.1b—7, if 70=b=<80,
(1 if b=80.

Second, he estimates the penalty cost and salvage value. Suppose these are taken
as ¥ =4 and § =0 respectively.
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According to formula (15), then,

80
Eg(z—Az*)=| 0.4(b—77) db=1.8,
77

7*(Ez—2%)=1(75—T77)=—2,
EVPI<18+42=38.

Thus, he concludes that 3.8 represents an upper bound to the amount of money
that could profitably be spent in obtaining information about the market.

For so simple a problem, W8 and RP can be computed exactly. We have,
in fact, WS = —75, RP = —78.75, resulting in EVPI =3.75.
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