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This paper examines issues in building decision support models for budgeting nursing
workforce requirements in a hospital. We determine regular-time, overtime, and agency
workforce levels for various skill classes in a budget cycle. We introduce a family of eight
models ranging from a single-period, aggregate and deterministic model to a multiperiod,
disaggregate and probabilistic model. In a single-period model, we ignore the time-varying
nature of demand for nursing hours. Aggregation is done over the nurse skill class mix. For
probabilistic models, we consider demand uncertainty. Using empirical data, we evaluate the
effects of level of sophistication in model building and in information requirements on their
relative performances. The results suggest that ignoring the time-varying nature of demand
does not induce gross errors in budget estimates. However, ignoring demand uncertainty
produces underestimates (about five to six percent) of budget needs—a consequence of a
Madansky (1960) inequality. It also induces added costs to the system due to implementing
nonoptimal regular-time workforce levels. Finally, we find that a simple formula using a
single-period demand estimate gives excellent approximations to the budget estimates obtain-
able from the more precise models.

(HEALTH CARE—HOSPITALS; PROGRAMMING—LINEAR, APPLICATIONS, PRO-
GRAMMING—STOCHASTIC)

1. Introduction

Nursing constitutes the largest single cost element in most hospitals today. For
hospital administrators, preparing yearly nursing workforce budgets remains a vexing
problem. The difficulties in defining and measuring quality patient care and nursing
productivity, and the probabilistic nature of demand for nursing care all contribute to
the complexity embedded in the budgeting process. Kao and Tung (1980) present a
survey of literature on the subject of budgeting nursing costs, and give an account of
the nursing staffing process as it relates to budgeting. They also present a linear
programming based model for assessing need for permanent staff, overtime pay and
contracting temporary help by medical service, nursing skill class and time period
(month). In this paper, we consider an important extension of the earlier model—
namely, the inclusion of demand uncertainty. This extension renders the model more
realistic and its results more accurate. We also consider the possibilities of aggregating
decision variables and ignoring the time-varying nature of demand. With these
modifications in mind, we introduce a family of eight models as possible alternatives
for building the decision support system. Each model is characterized by a triplet
XYZ. The first letter signifies whether the model is single or multiple period (X = S, or
M). In a multiperiod model, demands may vary over time. The second letter indicates
whether the model is an aggregate or disaggregate one (Y = A, or D). Aggregation is
over nursing skill classes. The third letter shows whether demands for nursing hours
are deterministic or probabilistic (Z = D, or P). Let ¢(XYZ) denote the minimum
expected cost associated with the XYZ model.
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§2 introduces a multiperiod, disaggregate, probabilistic (MDP) model, its aggregate
counterpart (MAP), and two deterministic specializations (MDD and MAD). There
we show that finding the minimum expected cost c(MAP) is straightforward, whereas
solving for the exact value of ¢(MDP) is difficult. We note also that c(MAP) can be
used as an upper bound (UB) for ¢(MDP) and a subgradient approach can be used to
establish the corresponding lower bound (LB). We summarize computation procedures
for the multiperiod models. For some medical services, the time-varying nature of
demand is not pronounced, and demand distributions can be considered stationary.
For these cases, it is natural to consider them as single-period problems. In §3, we
present four such models. In §4, we describe a procedure for projecting demand
distributions using historical data, and present an illustrative example. In §5, we use a
set of actual data to demonstrate the applications of the above models for developing
estimates of budgets and workforce levels. Finally, we perform a comparative study of
the performances of the various models using historical data for nine different medical
services of a hospital. Our goal is to assess the impacts of demand uncertainty,
decision-variable aggregation, and the demand-stationarity assumption on the budget
estimates, and on the actual costs incurred by implementing the optimal regular-time
workforce levels suggested by these models. The results suggest that the time-varying
nature of demand does not play a prominent role in affecting budget estimates,
whereas demand uncertainty, as expected, does. Ignoring demand uncertainty pro-
duces about five to six percent underestimates of budget needs and induces added
costs to the system due to implementing nonoptimal regular-time workforce levels. To
alleviate the computational burden, we find that a simple formula using a single-period
demand estimate gives good approximations to budget estimates.

Starting with Dantzig (1955), using a stochastic programming approach for model-
ing the type of problems under consideration has a long history (e.g., see references
given in Dempster 1980, and Stancu-Minasian and Wets 1976). This paper echoes the
central theme made in Kallberg, White and Ziemba (1982)-—namely, ignoring stochas-
tic components in linear programming formulations can be costly. Aggregation in
linear programming has been studied extensively in the past few years (e.g., see
Geoffrion 1976a, 1977 and Zipkin 1979, 1980, 1982). This paper and a companion
paper (Kao and Queyranne to appear) investigate aggregation in a two-stage stochastic
program. While different in content, our approach is developed in the spirit of Zipkin
(1979).

2. Multiperiod Models

For a given medical service, let random variable «, denote the demand in total
nursing hours in period t=1,..., 7. The estimation of demand distributions is
discussed in §4. Let decision variable R; denote the number of regular-time nursing
hours of skill class i to be allocated to the service in each period, where i = 1, 2, and 3
denote RN (registered nurse), LVN (licensed vocational nurse), and NA (nurse aide),
respectively. The above definition presumes a constant regular-time workforce over the
budget cycle. In addition, the adjustment of regular-time workforce occurs during the
budget lead time. A part of the regular-time workforce is taken up by vacations,
holidays, and sick leaves. The fraction of the productive regular-time workforce
available in period ¢ is p, and is assumed to be invariant across skill classes.

In meeting fluctuating demands during the budget cycle, we may employ overtime
as well as temporary help through nursing manpower agencies. These will be denoted
by O, and A,, the number of overtime and the number of agency nursing hours of
skill class i allocated to the service for period ¢. The maximum available overtime
workforce is bounded by a factor g times the productive regular-time workforce. The
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average costs per hour of regular-time, overtime, and agency nurse of skill class i are
denoted by 7, o,, and a;, respectively. Let r, = F;T, where r; gives the corresponding
T-period regular-time cost. The cost parameters satisfy

Condition C. (i) F; < 0; < a; for all i,

G)F<F_,0,<o0,_;,and g; < a;_{,i=2and3,

Gi) /3 p, < o, for all i.

The last inequality implies that the T-period regular-time cost even when adjusted by
the sum of all productivity factors is still lower than the overtime cost.

The proportions of nursing hours of different skill classes allocated to a given service
depend on the nature of the service (e.g., the type of medical specialties it serves, and
the level of care, etc.). While the demand for nursing service is expressed in aggregate
hours (over all skill classes and sources), the patient care requirement unique to the
service is reflected in terms of the constraint that the number of nursing hours of skill
class i allocated to the service cannot exceed a factor b,_,; times the corresponding
figure associated with skill class i — 1. This corresponds to the allowance of one-way
substitution in a hierarchical structure of skill classes.

The MDP Model

At the budget time, the hospital administrator determines the regular-time workforce
levels R, for each skill class and the total payroll budget for the entire budget cycle. As
actual demands occur each month, shortages in workforce are met by overtime and
agency personnel. The problem can thus be formulated as a two-stage stochastic
program with recourse (see Dantzig 1955, or Dantzig and Madansky 1961). First-stage
decisions deal with the sizing of regular-time workforce and second-stage decisions
determine the extent of use of recourse in each period—overtime, and if needed, the
more expensive external help provided by nursing agencies.

Let £ denote the sample space for all possible realizations of demand. Let d, = d,(w),
where w € {0 represents one such sample path. For a given R =(R,R,,R;), let
R’ =3'R,. For period ¢ with a given d,, the second-stage optimization problem is

¢,(R,d,) = minimize Z (0,0, + a,4,) subject to:

2 {Oit + Ait} > dt —P,R',

-0,> —gpR;, i=123, (1)
bi_10;1, = Oy + b_14;_,— Ay > —b_\pR_ + pR,, i=23,
0,,A4,>0 for all i.

In (1), the first constraint requires that the total workforce be sufficent to satisfy the
demand in each period, the second set of constraints places upper bounds on the
available overtime, and the third set stipulates the nursing staff composition require-
ments. For a given R, the second-stage optimization can be carried out independently
for each period. The two-stage stochastic program is given by ¢(MDP) = min{ E[¢(R)]
: R > 0}, where

E[e(R)] = {Srk + SE[e(R.)]] @

and E denotes the mathematical expectation with respect to «/,. While the model
captures the essence of the underlying process, solving the two-stage problem is a
nontrivial task. Before we describe a procedure for obtaining upper and lower bounds
for the minimum expected cost (2), we first introduce the following simplified variant.
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The MAP Model

In practice, aggregating decision variables and/or constraints may be desirable if it
does not induce gross errors. The authors (to appear) proposed an approach for
aggregating the decision variables in the MDP model. Let R’, O/, and A4, be the
aggregated decision variables over all skill classes. The corresponding (aggregated)
coefficients are

r=20 Wl o' =2} 10;, a'=2 wa, ©)

where g, =N, /A, i=1,2,3, A=5A, A\, =1, and A, = b, i = 1,2. For the aggre-

gate model, the minimum expected second -stage cost, denoted by E[c/(R’,«,)], is

’ 7 l lRl ’ ’
E[ei(R\ )] = [T, = pR)AF(,)

+f1°:g)p,kl[a'¢/, —(a'(1+g)— Olg)Ple] dF(<,), )

where F denotes the distribution function of «,. In (4), the two integrals give the
expected (minimum) overtime cost and agency-time cost, respectively. Moreover,
Elc,(R’,«,)] is convex in R’. The problem reduces to c(MAP) = min{ E[¢'(R")]: R
> 0}, where

E[c(R)] =r'R’+ZE[c,’(R’,a/,)1. %)

Solving the above one-variable convex minimization problem is straightforward (e.g.,
see Wagner 1975). The formulas for disaggregation are

R, = R’ for all 4, (6a)
0,=p,0;/ and A, =pA, foralli and ¢. (6b)

Equation (6a) will be used to disaggregate the regular-time workforce at the budget
time, whereas (6b) will be used in each period as the demand for the period unfolds.
Under (6a) and (6b), R,=b,_|R,_,, O, =b,_0,_,,, and A4, =b;_A,_,, for all i.
Moreover, 7, o/, and a’ have the interpretations of being the average hourly regular-
time, overtime, and agency-time costs, respectively, in the sense that >R, = 'R/,
0,0, =00/, and Y a,4,=a'4,.

Approximating the Solution of the MDP Model

Solving the stochastic program of the MDP model exactly is difficult in that finding
the values of the objective function requires the parametric solution of the second-
stage problem and numerical integration. A way to circumvent this difficulty is to
establish tight lower and upper bounds of the stochastic objective function, as in
Mangasarian and Rosen (1964) and Huang, Ziemba and Ben-Tal (1977). We now
summarize a procedure developed in Kao and Queyranne (to appear) for obtaining an
upper bound (UB) and a lower bound (LB) for ¢(MDP). Since the optimal solution for
the MAP model is feasible to the MDP model, UB = ¢(MAP). To come up with a
lower bound, for any R with R’ = > R; we first define P,,(R’) = p, - Prob{ p,R’ < &,

< p(1+ QR'), Po(R) = p,- Prob{, > p(1 + )R}, and P(R) =3, P(R'),j= 1
and 2. For any R satisfying (6a), we call it R. We note that E[c(R)] E[c’(R’)] ie.,
the expected costs of the two models are the same at R. For such R, a subgradient
vector a = (a;,a,,a;) of the objective function (2) is given by o, =r, — 0,P(R’) —
[(1 + g)a, — co]P(R"), i = 1,2, and 3. Define u*(R’) = min{3*_ No,/A: k=1,2,3}
and let o’ = S ;. (Note that u* depends on R’ through a.) Consider the case in



612 EDWARD P. C. KAO AND MAURICE QUEYRANNE

which a total of K such R have been considered. We let E( xy denote the kth such R,
and define

D’

C, = c’(R(k)) — 'R/}, (0

T, = u*(E{k)). (®)

In Kao and Queyranne (to appear), it is shown that a lower bound ¢(R’) on
E[c(R")] is given by

¢(Ry=max{C,+ T,R :k=1,...,K). 9)

Hence a lower bound on ¢(MDP) is given by LB = min{¢(R"): R’ > 0}. In §6, we
show that, for all cases examined, the differences between UB and LB are relatively
small. Thus they provide a good approximation for ¢(MDP).

One direction of model simplification is to ignore the demand uncertainty in the two
multiperiod formulations. This results in the following two models.

The MAD Model

In the multiperiod aggregate deterministic model, we assume that disaggregation is
done by (6). Thus for a given d,, the solution is at least feasible with respect to
constraint set (1). Let ¢;(R’,d,) denote the minimum total cost incurred in period ¢ for
a given aggregate regular-time workforce level R’ and d,. Define d/ = d,/p,, and
d” =d,/((1 + g)p)- Then it is easy to verify that

7R’ if d <R,
C;(Rl,d’)= F,R,+0l(d,_ptR,) lf d[// < R/< dt/’ (10)
(F+ogp)R" + a'[d, -1+ g)p,R’] if R <d’,

where 7 = r'/T, and r’, o', and a’ are defined by (3). For every fixed d,, Condition C
suggests that the slope of ¢, is nondecreasing in R’, and hence we conclude that ¢; is
convex in R’. Since the total cost under R’ is ¢'(R") = Y ¢/(R’,d,), ¢’ is piecewise linear
and convex in R’. Let set I = {d;,d”:t=1,..., T}. I represents the set of (at most)
2T breakpoints of the convex function ¢’(R’). Finding ¢(MAD) reduces to solving
¢(MAD) = min{37_,c/(R’): R’ € I}. This can easily be done by comparing the total
costs of the model with the value of R’ set at each one of the 27 breakpoints.

The MDD Model

The multiperiod disaggregate deterministic model is a linear program (LP) contain-
ing T sets of constraints (1) with R’ replaced by SR, (one set for each period) and a
deterministic objective function (2). The LP is almost identical to that given in Kao
and Tung (1981). For a yearly budget cycle with 7= 12, the LP has 75 variables and
72 constraints—a problem of modest size. Since the aggregate MAD model gives a
feasible solution to the LP, c(MAD) can be used as an upper bound for c¢(MDD). In
the example shown in §5, we see that the simple algebraic procedure for obtaining
¢(MAD) yields an extremely close approximation for ¢(MDD). Thus for practical
applications, there is no need to set up an LP solution.

3. Single-Period Models

For some medical services, the seasonal fluctuations in patient loads are not as
pronounced as others. The time-varying nature of demand could or should (as in some
of the uncertainty cases) be ignored. This leads to the single-period models in which we
assume that demands (or demand distributions) are stationary and single-period
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solutions are to be applied to the T periods in the budget cycle. For the deterministic
models, let d denote the single-period demand. When the demand per period is a
random variable &, let F denote its distribution. Let p denote the productivity factor
per period.

The SAD Model

The most simple and naive model of the eight models is the single-period, aggregate
model with a deterministic demand. Condition C implies that R’ = d/p and ¢(SAD)
=r'R’.

The SAP Model

An extension of the SAD model is to include demand uncertainty. Equation (4)
suggests that the expected single-period cost E[c/(R’,«)] is

E[(R\&)]=FR" + [P o/t — pRY)dF (o)
PR’

+f<1oig>,—m'{a/“/ ~ (a(1+ g) — o'g) pR'] dF (). (11)

Again, E[c[(R’,« )] is convex in R’. Solving (11) is straightforward, and ¢(SAP) =
T X min{ E[c/(R’,«)]: R > 0}. To simplify the computation further, we rewrite (11)
as

E[¢(R\«)] = FR + |
2

+(d - Ol)f(:g),-,,g/[‘{ — (1 + g)pR"|dF (). (12)

In (12), the last integral represents the expected shortage in nursing hours to be made
up from using agency workforce. This term is generally expected to be small and can
be ignored. This results in a “newsboy” type of solution (Johnson and Montgomery
1974)

“o'(« — pR')dAF (<)
o

F(pR)Y= (o' =)/ 0. (13)

Solving (13) only requires the use of the distribution of the one-period demand.

The SDD Model

Let O, and 4, denote the single-period overtime and agency nursing hours of skill
class 7 to be allocated to the service, respectively. The single-period disaggregate model
with a certain demand is given by the following LP:

minimize >} (R, + 0,0, + a;4;)  subject to:
S(PR+ O;+ A)>d
0,< gfR., i=1273,
PR+ O+ A, < b_(PRi_, + O+ A,_)), i=123 and
R ,0,,4,>0 for all i.

Again, Condition C_implies that in an optimal solution O, = 4; =0 for all i, and
consequently, >R, =d/p = R’ and R, = y,;R’. Thus we have ¢(SDD) = r'R’ and the
solution is identical to that of the SAD model.
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The SDP Model

This model is a one-period specialization of the MDP model. The problem seems
nearly as difficult as the MDD model. However, ¢(SAP) could be used as an upper
bound for ¢(SDP), and a lower bound can be derived using the same subgradient
technique as for the MDP model.

4. Demand Forecasts

Demand Forecast for Multiperiod Models

For the multiperiod models, assume that each period corresponds to a month in a
yearly budget cycle, so T = 12. As in Abernathy er al. (1973), we approximate the
distribution of #, by a normal distribution .# (m,,0?). To estimate m, and o}, let
v, = the average number of daily admissions in month ¢, o,%,, = the variance of daily
admissions in month ¢, = the average length of stay per admission, o} = the
variance of length of stay per admission, and L, = the patient-days generated by all
patients admitted on a given day in month ¢. Then we see that EF[L]= v, W, and
Var[L,] = 0,%,), w2+ y,o)z(.

To convert patient-days to nursing-hour requirements, we use the conversion factor
e given in Table 3 of Kao and Tung (1981); namely, eL, gives the nursing hours
needed for serving L, patient-days. Assume L, are independent random variables for
each day in month ¢, then m, = N,eE[L,] and o} = N,e*Var[L,], where N, denotes the
number of days in month ¢. In Kao and Tung (1980), a forecasting system using
autoregressive integrated moving average (ARIMA) time series models forms the basis
for projecting average daily admissions by month. To find an estimator for 0,%,,,, we
choose to equate it with the variance of forecast error, ie., we let 65, = o[l +
2} \I'Z, t=1,...,12, where ¥’s are the weights obtained as a by-product of
forecastmg endeavor (e.g., see Box and Jenkins 1976). For the two multiperiod
deterministic models, we use m, as our estimates for d,.

We now illustrate the use of the above approach for finding m, and ¢7. In Kao and
Tung (1980), using the 1973-1977 data, an ARIMA (0,0,1) X (0, 1, 1)12 model was
established for forecasting monthly admission rates vy, of surgical patients for 1978 (see
Table 1). In addition, we find that e =4.96, W =6.75, oi =299.87, ¢ = 1215,
¥, =0.3206, and ¥; = 0 for j > 1. Based on these figures, we can compute m, and o,
for 1978 shown in Table 1. There we also give direct sample estimates of §, based on
1973-1977 data (i.e., 67 = 317 (oy3(dy, — 4, )2/ 4, where d, = actual demand in nursing
hours for month ¢ in year i,and d = Z,_ {o13d, /5), and the actual 4, for 1978.

TABLE |
Demand Forecast for Surgical Patients in 1978.

4 Y m 4, 9, 2 P:

1 11.5376 11975 12385 1637 1418 0.8943
2 12.5239 11740 12335 1621 1315 0.8917
3 11.7249 12169 14512 1652 1535 0.8948
4 13.0746 13132 11363 1714 1537 0.9086
5 13.0313 13525 13644 1740 1077 0.9032
6 12.5431 12598 12657 1680 1575 0.8842
7 13.0105 13503 14448 1738 756 0.8513
8 13.6510 14168 12533 1780 3000 0.8798
9 12.5465 12602 12414 1680 2094 0.8871
10 11.3756 11807 12161 1627 988 0.9043
11 11.2851 11335 11477 1595 1261 0.8606
12 10.0296 10410 13540 1530 1319 0.8341

TInput data based on the study reported in Kao and Tung (1980, 1981).
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Demand Forecast for Single- Period Models

For single-period models, one may employ a simple exponential smoothing method
for forecasting and use yearly averages per period as inputs. To generate estimates for
use in the next section, we average the multiperiod forecasts instead. This gives
P =0.8828, d = 12414, and o = 1666.

5. An Example

Using demand forecasts obtained earlier, we now illustrate the development of
budget estimates for 1978 for the surgical service of the hospital studied in Kao and
Tung (1980, 1981). The hospital, supported primarily by tax revenues, serves the
medically indigent residing in a growing metropolis in the Sunbelt. From Kao and
Tung (1981) we find that {7} = {7.03,4.53,3.44}, {0,} = {9.59,6.18,4.69}, {a;} =
{1L.70,9.95,5.78}, and g = 0.2. With b, = 0.6 and b, = 2.0, we have A, = 1, A, = 0.6,
A; =12, and A =28, and consequently, p, = 0.3571, p, = 0.2143, and p, = 0.4286.
Using (3), we obtain the aggregate cost factors r' = 59.4669, o' = 6.7591, and @’ =
8.7877.

The MAD Model

Using the d, given in Table 1, we first compute the set / comprising the 24
breakpoints. With R’ set at each one of these breakpoints, we compute the single
period cost ¢,(R’,d)) using (10). For each such R’, summing ¢, over all ¢ yields ¢’(R’).
In Figure 1, we plot ¢'(R’) for all R’ € I, and connect these points to form a piecewise
linear (convex) function. For this model, c(MAD) = $852,250 with R’ = 13166. Using
the disaggregation factors, we obtain R = (4702,2821, 5643).

The MDD Model

Solving the LP, we find ¢(MDD) = $852,214 and R = (4718,2831,5617). It is
interesting to note that (i) under this solution R’ = 13166, which is identical to that
obtained under the aggregate model, (ii) the optimal regular-time workforce mix by
skill class is similar to that generated by applying the disaggregation factors, and (iii)
the minimum cost ¢(MDD) is only $36 lower than its upper bound ¢(MAD). This
seems to suggest that for deterministic demands the simple algebraic method can give
good approximations. In the LP solution, the agency time is used only to meet extreme
demand surges occurring in July and August—for certainty models, this is to be
expected.

Computing the LB for ¢(MDD) does not seem to have any practical value due to
the ease with which one can solve the LP directly. However, we include it here for
illustrating the procedure which will eventually be applied to the uncertainty models.
When demands are deterministic, P;,(R’) and P,,(R’) are simple constants—either p,
or 0. By considering R’ € I, we construct the upper convex envelope formed by ¢(R")
shown in Figure 1. An approximate lower bound on ¢(MDD) is given by LB
=min{c(R’): R’ € I} = $847,010. A more precise LP occurs where 992639 — 13.68 R’
intersects 833478 + 1.24R’ (the intercepts and slopes of the two lines correspond to
those computed at R’ = 12481 and 13166, respectively). Equating the two lines (cf.
Figure 1) yields LB = $846,706 with R’ = 10668. The relative gap, (UB — LB)/LB X
100%, is 0.65%.

In Figure 1, we also plot the optimal value of the objective function as a function of
R’ (with R’ = 3 R)) using the parametric LP. We see that the difference in minimum
total cost between the parametric LP solution and the aggregate solution diminishes as
R’ increases and becomes negligible when R’ > 13166. This implies that only at lower
levels of regular-time workforce an LP solution can do better than the aggregate
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FiGure 1. Cost Computations for the MAD and MDD Models.

solution. The saving achieved by an LP solution (over an aggregate solution) is
attributable to the room available for manipulating the overtime and agency workforce
over skill classes.

The MAP Model

Evaluating (4) can be carried out either by numerical integration or through the use
of the normal loss integral as suggested in Kao and Queyranne (to appear). The
minimum cost solution occurs at R’ = 12708 with ¢(MAP) = $885,874. Similar to (4),
we can compute the second moment of the one-period cost by numerical integration
and estimate the variance of yearly cost Var[¢'(R")]. If we plot the standard deviation
of yearly cost as a function of R’, we see that the variation in cost decreases rapidly as
R’ increases. At optimality with R’ = 12708, if we use the two-standard-deviation
criterion to establish a confidence interval for the actual cost in 1978, we have
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885,874 + (2)(35,258), or approximately, ¢'(R’) €[815,358;956,390]. In practice, this
confidence interval estimate will perhaps be more useful.

The MDP Model

For the range of R’ shown in Figure 1, we use 200 equally spaced points E’ o to
generate C, and T, and construct the upper convex envelope formed by ¢(R’). (The
choice of K is arbitrary; a choice of 200 points is extravagant but almost costless.) Let
LB = min{c(R"): E('k),k =1,2,...,200}, we obtain LB = $877,050 at R’ = 10106.
{(We could fine-tune our estimate of LB using the line intercept approach shown
earlier. This would yield LB = $877,024—a difference of little significance. However if

we had used fewer points, then the improvement could have been somewhat more.)

The SAD and SDD Models

In an optimal solution, both models call for R’ = d/p = 14061 and c¢(SAD)=
c(SDD) = $836,195.

The SAP Model

For a normal demand distribution, equation (12) can be reduced to
E[cs’(R’,a/)] =F7R' +a'd+ [o’g —a'(l+ g)]pR’
+0'0¢[z,(R")] + (& — 0')od[ Zo(R")]
+0' W\(RND[Z\(R)] + (a' — o' )WWy(RNP[ Z(R)], (14)

where W\(R')= R’ —d, Wy(R')=(1+ g)pR’, Z\(R")= W(R")/0, Z,(R')=
wy(R")/o, and ¢ and ® denote the standardized normal density and distribution
functions, respectively. Since E[c¢’(R’,« )] is convex in R’, applying a search algorithm
yields ¢(SAP) = $877,810 and R’ = 12825. Turning to the approximation for the SAP
model, (13) reduces to ®(pR") = 0.2668 and

R’ =(d - 0.6220)/p. (15)

Thus we find R’ = 12888 with ¢(SAP) ~ $877,844.
Finally, we remark that since the computational simplicity expected of a single-
period model is not shared with the SDP model, we exclude it from our illustration.

6. A Comparative Study

We now consider the applications of the budgeting models to the hospital studied
earlier in Kao and Tung (1981). The objective is to gain insights about the various
issues involved in model building (cf. Geoffrion 1976b)—especially with regard to the
roles played by the aggregation of decision variables, the uncertainty, and the time-
varying nature of demands. The hospital under study has nine different medical
services each with its own parameter sets and each prepares its own budget. The
conclusions drawn from this sample of nine data sets, while by no means definitive,
are indicative of what are to be expected from cases under similar settings. Based on
the 1973-1977 data, the forecasted means for the monthly demands in nursing hours
for 1978 and the coefficients b, and b, for each department are given in Kao and Tung
(1981). The actual monthly demands and the estimated standard deviations of de-
mands for 1978 are given in Kao and Queyranne (1982). Along with the cost
coefficients and the coefficients g and p, given in the last two sections, they constitute
the complete data set.
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TABLE 2
Bounds for c(MDP)
O
R’ c(MAP) aIn Relative
Medical Optimizing [UB for R’ Yielding LB for Gap 100% X
Service ¢(MAP) ¢(MDP)] o[c'(RN]F LB ¢(MDP) I-1/n
GYN 3453 206844 6835 2710 202103 2.35
MED 11682 809456 33594 9688 800978 1.06
NEU 2199 160182 7895 1773 158772 0.89
NRS 5327 456625 17508 5327 456625 0.
OPH 5833 390303 13637 4585 386712 0.93
PBT 9531 668733 23886 7683 664341 0.66
PSY 3334 235692 12551 2458 233689 0.86
SUR 12708 885874 35204 10106 877050 1.01
PLS 2528 188882 13520 1996 185986 1.56
Summary 56595 4002591 46326 3966256 0.92

fUsing the R’ that minimizes c(MAP).

The Bounding Procedure for c(MDP)

Since the MDP model is the most detailed (and most accurate) model of the eight
and finding ¢(MDP) is difficult, we empirically evaluate the adequacy of the bounding
procedure introduced in §2. First we solve the aggregate MAP models. The minimum
costs ¢(MAP), the minimizing R’, and the respective standard deviations oE[c’(R")]
are tabulated in Table 2. Following the procedure presented earlier, we find the LB’s
and the minimizing R’ shown in the table. Since the relative gap represents the
maximum relative reduction in the expected cost possible by not following the
{proportional) disaggregation formulas (6), the figures shown in the table suggest that
the maximum amounts of improvement possible by considering a disaggregate model
are in most cases in the ballpark of one percent. For the case in which the largest
relative gap of 2.35% occurs, it is interesting to note that the service has the largest b,
factor and the largest coefficient of variation (CV = 10%) of mean demands (specifi-
cally, with s =312 (m, — m)?/11 and m =32 ,m,/12, we have CV = s/m). The
larger the b;’s the more flexible it becomes to manipulate the skill class mix. The larger
the CV the more room a decision maker will have in making such manipulations.
Following these observations, we also see that the relative gap associated with NRS is
zero. There b, is very small, b, is zero, and CV is only 3%.

Evaluating the MAP Model

The above discussion suggests that c(MAP) is adequate for estimating the budget
need. This estimate is on the conservative side in the sense that c(MAP) will always be
an overestimate of ¢(MDP). For decision making under uncertainty, a good decision
will not necessarily yield a good outcome—especially when outcomes hinge on the
realization of one sequence of random phenomena. Nevertheless, to satisfy our
curiosity we used the 1978 actual demands to compute the various cost figures. First
we obtained the ¢c(MAD) shown in Table 3, the minimum costs obtainable if we know
the demands for certain. Comparing these figures with the recommended budgets
c(MAP), we have a total underestimate of 6.39% (cf. Table 3). This is an error in
budget estimate. In actuality, the error in total cost resulting from actually implement-
ing the R’ minimizing ¢c(MAP) is given by ¢(MAP) — ¢'(R"), where ¢’(R’) represents
the total cost under R’ associated with the MAD model when the actual demands for
1978 are in effect. In Column II of Table 3, we tabulate these ¢’(R’). Column IV of the
table shows that if we propose a budget based on ¢(MAP) and implement the
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TABLE 3
Expected Costs Under Actual Demands
)] an [y av) V)
c(MAD) (RN (c(MAP)* (c(MAP)* ar-n/1

Medical Use Actual Use Actual -D/Ix —1II)/1I X X
Service Demands® Demands® 100% 100% 100%
GYN 172599 187044 19.84 10.59 8.37
MED 811360 812187 —-023 -0.34 0.10
NEU 135760 140458 17.99 14.04 3.46
NRS 544910 550688 - 16.20 —17.08 1.06
OPH 528985 580091 —26.22 —-32.72 9.66
PBT 668875 672726 - 0.02 —-0.59 0.58
PSY 303826 326700 —2243 —27.86 7.53
SUR 882253 890709 041 —0.54 0.96
PLS 227087 241850 — 16.82 —21.90 6.50
Summary 4275655 4402453 —6.39 —9.08 2.97

$These are the only two cases in which we use the actual 1978 demands shown in Kao and
Queyranne (1982) for computing the expected costs. In all other cases, we use the forecasted
demands for 1978.

TThis represents the total cost if we implement the optimal R’ obtained from the MAP model
while the actual demands for 1978 are in effect.

*From Column (I) of Table 2.

corresponding R’, then we will actually get a nine percent underestimate of total cost.
This gross underestimate of cost is caused primarily by a substantial underestimate of
demands incurred in 1978. For the two largest services (MED and SUR), the forecasts
are comparatively accurate, and there the errors both in budgets and actual costs are
minimal.

Comparing Columns I and II of Table 3, we find that, if the R’ minimizing ¢(MAP)
are in use, then the overall error in actuality is only 2.97% (Column V). This is much
smaller than the other two types of error considered earlier.

Assessing Other Aggregate Models

We now use the MAP model as the benchmark and assess the adequacy of using the
other three aggregate models. The forecasted demands for 1978 are the inputs. Taking
the MAD model as an example, we define two criteria for evaluation. The first, the
percent of nominal error (PNE), is defined as

PNE = 100% X (c(MAD) ~ ¢(MAP))/c(MAP).

This measures the relative error in the proposed budget caused by ignoring the
uncertainty of demand. Recall E[¢’(R’)] denotes the expected cost when R’ is
implemented in the MAP model. Whichever aggregate model one uses, when the
corresponding (minimizing) R’ is implemented a more accurate estimate of expected
cost is then given by E[¢’(R’)]. This induces a different type of error called the percent
of actual error (PAE), where PAE = 100% X (E[¢'(R")] ~ ¢(MAP))/c(MAP). In Table
4, we give the minimizing R’, the expected minimal costs, the expected actual costs
E(c'(R"), and the PNE’s and PAE’s for the other three aggregate models.

The figures in the table indicate that the two deterministic variants are both
inadequate in that they tend to give lower budget estimates while in actuality they cost
a little more than those produced by c¢(MAP). On the other hand, the results of SAP
models suggest that ignoring the time-varying nature of demand is acceptable so long
as one takes demand uncertainty into account. Finally, the figures in Table 5 suggest
that the simple formula (15) for approximating R’ for the SAP model performs well.



TABLE 4

Assessing the Relative Performances of Aggregate Models

Medical Optimal
Service R’ c¢(MAD) E[c¢'(R))] PNE PAE
The GYN 3525 201979 207009 - 235 0.08
MED 12472 773299 815230 —4.47 0.71
MAD NEU 2343 151445 161091 — 545 0.57
NRS 5309 442146 456631 —3.17 0.00
Model OPH 6154 377443 392442 —-3.29 0.55
PBT 10003 643929 671651 -37 0.44
PSY 3495 221286 236266 —6.11 0.24
SUR 13166 852250 887557 —3.80 0.19
PLS 2760 170716 190235 - 9.62 0.72
SUMMARY 3834493 4018116 —-4.20 0.39
Medical Optimal
Service R’ c¢(SAP) E[c'(R))] PNE PAE
The GYN 3455 203630 206846 — 1.55 0.00
MED 11708 807835 809459 - 020 0.00
SAP NEU 2200 159833 160182 - 022 0.00
NRS 5340 455311 456634 -0.29 0.00
Model OPH 5850 388979 390312 - 034 0.00
PBT 9555 666406 668747 - 035 0.00
PSY 3340 234551 235691 — 048 - 0.00
SUR 12825 877810 885978 - 091 0.01
PLS 2530 188611 188881 -0.14 —0.00
SUMMARY 3982966 4002733 —0.49 0.00
Medical Optimal
Serivce R’ ¢(SAD) E[c'(R")] PNE PAE
The GYN 3740 196005 209382 —5.24 1.23
MED 12830 765810 821714 —5.39 1.51
SAD NEU 2445 149462 162810 — 6.69 1.64
NRS 5838 434111 463683 —4.93 1.55
Model OPH 6376 373034 396351 —4.42 1.55
PBT 10443 638382 679423 —4.54 1.60
PSY 3751 217792 239692 - 759 1.70
SUR 14061 836195 900724 —5.61 1.68
PLS 2880 168481 191996 — 10.80 1.65
SUMMARY 3779272 4065779 —5.58 1.58
TABLE 5
Evaluating the Approximation Formula for Finding the Optimal R’ and the SAP Model*
(In
(D Exp. Cost Opt. R'—1)/ I — c(SAP))/
Medical Approximate under R’ Opt R’ c(SAP)
Service R’ E[c{R",&)] X 100% X 100%
GYN 3485 203661 0.87 0.02
MED 11692 807838 —0.14 0.00
NEU 2183 159849 - 0.77 0.01
NRS 5360 455326 0.37 0.00
OPH 5902 389043 0.89 0.02
PBT 9648 666512 0.97 0.02
PSY 3309 234577 —-0.93 0.01
SUR 12888 877844 0.49 0.00
PLS 2412 188961 — 4.66 0.19
SUMMARY 3983611 0.02

*The optimal R’ and ¢(SAP) are shown in Table 4.
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The approximate R’ are all very close to the optimizing R’ (with perhaps the exception
of PLS).!
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The authors are grateful to Philip Patrick Sun, Executive Director of Planning, the Harris County Hospital
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